WorkshopsDe CadedifRevisión a fecha de 10:29 20 nov 2007; Cadedif (Discusión | contribuciones)
Seminario del Departamento: CADEDIFDepartamento de Matemática Aplicada Universidad Complutense de Madrid Jornada de Dinámica Infinito Dimensional Martes 27 de Noviembre de 2007 Lugar: Sala 209, Seminario del Departamento de Matemática Aplicada Facultad de Ciencias Matemáticas, UCM 9:30-10:20. "Attractors for Parabolic Problems in dumbbell domains", German Lozada, Univ. Del Estado de Sao Paulo, Brasil 10:20-11:10. "Semilinear Damped Wave Equations with nonlinearities", Jan Cholewa, U. Silesia (Katowice), Polonia 11:15-11:45. Café 11:45-12:35. "Dynamical approach to elliptic BVP in asymptotically symmetric unbounded domains", Messoud Efendiev, Technische Universistät München, Alemania 12:35-13:25. "Non simultaneous quenching in a system of heat equations coupled at the boundary", Raul Ferreira, U. Complutense Organiza: Grupo de Investigación CADEDIF de la UCM. Parcialmente financiado por: Proyecto MTM 2006-08262, "Programa de financiación de Grupos de Investigación UCM-Comunidad de Madrid GR69/06-920894" y Departamento de Matemática Aplicada, UCM Más información: José M. Arrieta [arrieta@mat.ucm.es] Anibal Rodriguez Bernal [arober@mat.ucm.es]
ABSTRACTS"Attractors for Parabolic Problems in dumbbell domains" German Lozada, Univ. del Estado de Sao Paulo, Brasil In this talk we analyze the dynamics of a parabolic equation with homogeneous Neumann boundary conditions in the dumbbell domain. We provide an appropriate functional setting to treat this problem and show that the attractors behave upper semicontinuous as the channel shrinks to a line segment. "Semilinear Damped Wave Equations with fast growing Cholewa, U. Silesia (Katowice), Polonia nonlinearities" Jan A class of the second order in time semilinear partial differential equations is considered in the Banach space setting. The results concerning local existence, regularity, bootstrapping continuation, and asymptotic properties of solutions are discussed in case when the nonlinear term satisfies certain critical growth conditions. "Dynamical approach to elliptic BVP in asymptotically symmetric unbounded domains", Messoud Efendiev, Technische Universistät München, Alemania We consider dynamical approach to the elliptic problem in asymptotically symmetric unbounded domain and study the large-time behaviour of solutions. Due to the lack of the uniqueness of the solutions the standard approach based both on the semigroup theory and on elliptic machinery fails. Our approach based on the trajectory dynamical systems. Symmetrization and stabilization of the solitions as well as open problem will also be discussed. "Non simultaneous quenching in a system of heat equations coupled at the boundary", Raul Ferreira, U. Complutense We study the formation of singularities in finite time for solutions of the heat equations coupled at the boundary through a nonlinear flux at one border and zero flux at the other border. We characterize, in terms of the parameters involved when non-simultaneous quenching may appear. Moreover, if quenching is non-simultaneous we find the quenching rate and the quenching set. We also find a possible continuation after quenching of the solutions. Joint work with A. de Pablo, Mayte Pérez-Llanos, F. Quirós and J. D. Rossi. iMdea matemáticas:seminario 29 de noviembre 2007Dpto. de Matemáticas, sala 520 Facultad de Ciencias - UAM Ciudad Universitaria de Cantoblanco 28049 Madrid
David KREJ CIRÍK Department of Theoretical Physics, Nuclear Physics Institute, Academy of Sciences, Rez, Czech Republic e-mail: krejcirik@ujf.cas.cz
11:10 · 11:50 Existence and continuity of global attractors for a class of non local evolution equations Antônio L. PEREIRA Instituto de Matemática e Estatística-USP Rua do Matão, 1010, Cidade Universitária, São Paulo-SP, Brasil e-mail: alpereir@ime.usp.br In this work we prove the existence of a compact global attractor for the flow of the equation
in L2(S1). We also show that the flow is gradient and the global attractor depends continuosly on the parameters h and . AMS subject classification: 34G20,47H15. 11:50 · 12:10 Coffee break
A. G. RAMM Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA ramm@math.ksu.edu A method is given for calculation of a distribution of small impedance particles, which should be embedded in a bounded domain, filled with material with known refraction coefficient, in order that the resulting new material would have a desired refraction coefficient. The new material may be created so that it has some desired wave-focusing properies. For example, it can scatter plane wave mostly in a fixed solid angle. The inverse scattering problem with scattering data given at a fixed wave number and at a fixed incident direction is formulated and solved. |