|
Publications
De Cadedif
Publications in peer reviewed journals
Publications before 2018
Publications before 2018
Year 2018
- Ferreira, R.; de Pablo, A. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions. Rev. Mat. Complut. 31 (2018), no. 3, 805–832.
- Ferreira, Raul Blow-up for a semilinear heat equation with moving nonlinear reaction. Electron. J. Differential Equations 2018, Paper No. 32, 11 pp.
- Damascelli, Lucio; Pardo, Rosa A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl. 41 (2018), 475–496
- Arrieta, José M.; Santamaría, Esperanza C1,θ-estimates on the distance of inertial manifolds. Collect. Math. 69 (2018), no. 3, 315–336. 35K90 (35B42)
- Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Boundary homogenization for a triharmonic intermediate problem. Math. Methods Appl. Sci. 41 (2018), no. 3, 979–985.
- Robinson, James C.; Rodríguez-Bernal, Aníbal Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Adv. Math. 334 (2018), 488–543.
- Jiménez-Casas, Ángela Metastable solutions for the thin-interface limit of a p-Laplacian phase field model. Math. Methods Appl. Sci. 41 (2018), no. 16, 6851–6865
- Jiménez-Casas, Ángela Asymptotic Behaviour of a Viscoelastic Thermosyphon Model.Chaotic Modeling and Simulation (CMSIM).
- Rodríguez Gomez, Alberto; Jiménez-Casas, Ángela Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform. American Journal of Engineering Research(AJER)
- Henry, David; Sastre-Gomez, Silvia Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity. Differential Integral Equations 31 (2018), no. 1-2, 1–26
- Brauer, Uwe; Karp, Lavi Local existence of solutions to the Euler-Poisson system, including densities without compact support. J. Differential Equations 264 (2018), no. 2, 755–785.
Year 2019
- Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
- Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
- Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
- Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro. 'Interaction of localized large diffusion and boundary conditions', Journal of Differential Equations, Volume 267, Issue 5, p. 2687-2736 (2019).
Year 2020
- Robinson, J. C., & Rodríguez-Bernal, A., The heat flow in an optimal Fréchet space of unbounded initial data in \(\Bbb R^d\), J. Differential Equations, 269(11), 10277–10321 (2020). http://dx.doi.org/10.1016/j.jde.2020.07.017
- Pardo, R., & Sanjuán, A., Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth, Electron. J. Differential Equations, (), 114–17 (2020).
- López-García, D., & Pardo, R., A mathematical model for the use of energy resources: a singular parabolic equation, Math. Model. Anal., 25(1), 88–109 (2020). http://dx.doi.org/10.3846/mma.2020.9792
- Jiménez-Casas, Á., & Rodríguez-Bernal, A., PDE problems with concentrating terms near the boundary, Commun. Pure Appl. Anal., 19(4), 2147–2195 (2020). http://dx.doi.org/10.3934/cpaa.2020095
- Javadi, A., Arrieta, J., Tuval, I., & Polin, M., Photo-bioconvection: towards light control of flows in active suspensions, Philos. Trans. Roy. Soc. A, 378(2179), 20190523–17 (2020). http://dx.doi.org/10.1098/rsta.2019.0523
- Ferreira, R., & de Pablo, A., Grow-up for a quasilinear heat equation with a localized reaction, J. Differential Equations, 268(10), 6211–6229 (2020). http://dx.doi.org/10.1016/j.jde.2019.11.033
- Castro, A., Cossio, J., Herrón, S., Pardo, R., & Vélez, C., Infinitely many radial solutions for a sub-super critical $p$-Laplacian problem, Ann. Mat. Pura Appl. (4), 199(2), 737–766 (2020). http://dx.doi.org/10.1007/s10231-019-00898-x
- Brauer, U., & Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler-Poisson system, J. Anal. Math., 141(1), 113–163 (2020). http://dx.doi.org/10.1007/s11854-020-0125-4
- Arrieta, J. M., & Villanueva-Pesqueira, M., Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary, Commun. Pure Appl. Anal., 19(4), 1891–1914 (2020). http://dx.doi.org/10.3934/cpaa.2020083
- Arrieta, J., & Sevilla, A., On the flow separation mechanism in the inverse Leidenfrost regime, J. Fluid Mech., 897(), 4–18 (2020). http://dx.doi.org/10.1017/jfm.2020.380
- Arrieta, J., Jeanneret, R., Roig, P., & Tuval, I., On the fate of sinking diatoms: the transport of active buoyancy-regulating cells in the ocean, Philos. Trans. Roy. Soc. A, 378(2179), 20190529–12 (2020). http://dx.doi.org/10.1098/rsta.2019.0529
- Arrieta, J., Cartwright, J. H. E., Gouillart, E., Piro, N., Piro, O., & Tuval, I., Geometric mixing, Philos. Trans. Roy. Soc. A, 378(2179), 20200168–20 (2020). http://dx.doi.org/10.1098/rsta.2020.0168
Year 2021
- Pereira, M. C., & Sastre-Gomez, S., Nonlocal and nonlinear evolution equations in perforated domains, J. Math. Anal. Appl., 495(2), 124729–21 (2021). http://dx.doi.org/10.1016/j.jmaa.2020.124729
- Mavinga, N., & Pardo, R., Equivalence between uniform \(L^p^*\) a priori bounds and uniform \(L^\infty\) a priori bounds for subcritical $p$-Laplacian equations, Mediterr. J. Math., 18(1), 13–24 (2021). http://dx.doi.org/10.1007/s00009-020-01673-6
- Ferreira, R., & de Pablo, A., Blow-up rates for a fractional heat equation, Proc. Amer. Math. Soc., 149(5), 2011–2018 (2021). http://dx.doi.org/10.1090/proc/15165
- Clapp, M., Pardo, R., Pistoia, A., & Saldaña, A., A solution to a slightly subcritical elliptic problem with non-power nonlinearity, J. Differential Equations, 275(), 418–446 (2021). http://dx.doi.org/10.1016/j.jde.2020.11.030
- Cardone, G., Perugia, C., & Villanueva Pesqueira, M., Asymptotic behavior of a Bingham flow in thin domains with rough boundary, Integral Equations Operator Theory, 93(3), 24–26 (2021). http://dx.doi.org/10.1007/s00020-021-02643-7
- Brauer, U., & Karp, L., The non-isentropic relativistic Euler system written in a symmetric hyperbolic form, In (Eds.), Anomalies in partial differential equations (pp. 63–76) (2021). : Springer, Cham.
- Bezerra, F. D. M., Sastre-Gomez, S., & da Silva, S. H., Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition, Appl. Anal., 100(9), 1889–1904 (2021). http://dx.doi.org/10.1080/00036811.2019.1671973
Year 2022
- Rodríguez-Bernal, A., & Sastre-Gómez, S., Nonlinear nonlocal reaction-diffusion problem with local reaction, Discrete Contin. Dyn. Syst., 42(4), 1731–1765 (2022). http://dx.doi.org/10.3934/dcds.2021170
- Rodríguez-Bernal, A., Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces, Nonlinear Anal., 221(), 112887–34 (2022). http://dx.doi.org/10.1016/j.na.2022.112887
- Ferreira, R., & de Pablo, A., A nonlinear diffusion equation with reaction localized in the half-line, Math. Eng., 4(3), 024–24 (2022). http://dx.doi.org/10.3934/mine.2022024
- Cholewa, J. W., & Rodriguez-Bernal, A., Sharp estimates for homogeneous semigroups in homogeneous spaces. Applications to PDEs and fractional diffusion in \(\Bbb R^N\), Commun. Contemp. Math., 24(1), 2050070–56 (2022). http://dx.doi.org/10.1142/S0219199720500704
- Cholewa, J. W., & Rodriguez-Bernal, A., On some PDEs involving homogeneous operators. Spectral analysis, semigroups and Hardy inequalities, J. Differential Equations, 315(), 1–56 (2022). http://dx.doi.org/10.1016/j.jde.2022.01.029
- Bandyopadhyay, S., Chhetri, M., Delgado, B. B., Mavinga, N., & Pardo, R., Maximal and minimal weak solutions for elliptic problems with nonlinearity on the boundary, Electron. Res. Arch., 30(6), 2121–2137 (2022). http://dx.doi.org/10.3934/era.2022107
Accepted for publication
- Brauer, U.; Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler--Poisson system accepted for publication in Journal d'Analyse Mathematique (2019).
- R. Ferreira y A. de Pablo, Grow-up for a quasilinear heat equation with a localized reaction, JDE
Books
- S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007
- R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).
- R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
- Rodríguez del Río. Una nueva visión de la geometría, Felix Klein. Colección Genios de las Matemáticas, RBA, Barcelona, 2017. (ISBN:978-84-473-9067-0). Translated into French (ISBN: 978-84-473-9611-5) and into Italian (ISSN: 2531-890X)
|