December 26, 2024, Thursday, 360

Publications

De Cadedif

Contenido


Publications in peer reviewed journals

Year 2002

  1. J. M. Arrieta, N. Consul, A. Rodríguez-Bernal “Pattern Formation from boundary reaction” Fields Inst. Commun., 31, pp. 13-18, Amer. Math. Soc., Providence, RI, (2002).
  2. X. Biao Lin, I. Bosch “Heteroclinic and periodic cycles in a perturbed convection model” Journal of Differential Equations 182 pp. 219-265 (2002)
  3. R. Ferreira, P. Groisman y J. D. Rossi, “Numerical Blow-up for a nonlinear problem with a nonlinear boundary condition” Math. Models and Methods in Applied Sciences, 12, 461--483, 2002
  4. R. Ferreira, V. A. Galaktionov y J. L. Vázquez, “Uniqueness of Asymptotic Profiles for and extinction Problem” Nonlinear Analysis T. M. A., 50, 495--507, 2002
  5. R. Ferreira, F. Quiros y J. D. Rossi “The balance between nonlinear inwards and outwards boundary-flux for nonlinear heat equations” Journal of Differential Equation, 184, 259--282, 2002
  6. A. Jiménez-Casas and A. Rodríguez-Bernal. Asymptotic behaviour for a phase field model in higher order Sobolev spaces. Rev. Mat. Complut., 15(1):213-248, 2002.
  7. A. Rodríguez-Bernal. Some qualitative dynamics of nonlinear boundary conditions. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12(11):2333-2342. Spatio-temporal comp lexity. (2002)
  8. A. Rodríguez-Bernal. Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data. J. Differential Equations, 181(1):165-196, 2002.
  9. R. Dager, E. Zuazua “Spectral boundary controllability of networks of strings”, C.R. Acad. Sci. Paris, Serie I, 334 (7), 545-550, (2002)

Year 2003

  1. J. Fernández Bonder, R. Ferreira y J. D. Rossi, “Uniform bounds for the best Sobolev trace constant” Advanced Nonlinear Studies, 3, 181--192, 2003
  2. R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “The blow-up profile for a fast diffusion equation with a nonlinear boundary condition” Rocky Mountain J. Math, 33, 123--146, 2003
  3. R. Ferreira y J. L. Vázquez “Study of self-similarity for the fast difusión equation” Advances in Differential Equations, 8, 1125--1152, 2003
  4. R. Ferreira, P. Groisman y J. D. Rossi , “An adaptive numerical scheme for a parabolic problem with blow-up” IMA Journal of Numerical Análisis, 23, 439--463, 2003
  5. M. Negreanu, E. Zuazua, “Uniform boundary controllabillity of a discrete 1-D wave equation” , System and Control Letters, 48, Issues 3-4 pp 261-279 (2003)
  6. M. Negreanu, E. Zuazua, “A 2-d grid algorithm for the 1-d wave equation” Proceedings of the Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation, Waves 2003, Physcis and Astronomy, pp. 213-217, Springer (2003)
  7. R. Rodríguez del Río, E. Zuazua, “Series de Fourier y fenómeno de Gibbs”, Cubo Matemática Eduacional, 5 pp. 185-224 (2003)

Year 2004

  1. J.M. Arrieta "El Cálculo y la Modelización Matemática", en R. Rodríguez, E. Zuazua, De la Aritmética al Análisis: Historia y Desarrollo reciente en Matemáticas, Aulas de Verano, Instituto Superior de Formación del Profesorado, Ministerio de Educación y Ciencia,pp 11-57 (2004)
  2. J. M. Arrieta, A.N. Carvalho "Spectral Convergence and Nonlinear Dynamics for Reaction-Diffusion Equations under Perturbations of the Domain" Journal of Diff. Equations 199, pp. 143-178 (2004)
  3. J. M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Asymptotic Behavior and Attractors for Reaction Diffusion Equations in Unbounded Domains" Nonlinear Analysis, 56, pp. 515-554 (2004)
  4. J. M. Arrieta, N. Consul, A. Rodríguez-Bernal, "Stable boundary layers in a diffusion problem with nonlinear reaction at the boundary" Z.. Angew. Math. Phys. 55, pp. 1-14 (2004)
  5. J. M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Linear parabolic equations in locally uniform spaces" Mathematical Models and Methods in Applied Sciences, 14, n. 2, 253-294 (2004)
  6. J. M. Arrieta, A. Rodríguez-Bernal and P. Souplet, "Boundedness of Global Solutions for Nonlinear Parabolic Equations involving Gradient Blow-up Phenomena" Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. Issue 1, Volume 3/2004, Series 5, pp 1-15, (2004)
  7. J. M. Arrieta, A. Rodríguez-Bernal "Localization on the boundary of blow-up for reaction-diffusion equations with nonlinear boundary conditions" Communications in Partial Differential Equations 29, 7&8, pp. 1127-1148 (2004)
  8. J.M. Arrieta, A. Rodríguez-Bernal "Non well posedness of parabolic equations with supercritical nonlinearities" Communications in Contemporary Mathematics 6, n 5, pp. 733-764 (2004)
  9. E. Chasseigne y R.Ferreira, “Monotone approximations of Green functions” Comptes Rendus Mathématique. Académie des Sciences. Paris, 339, 395--400, 2004
  10. R. Ferreira, P. Groisman y J. D. Rossi., “Numerical blow-up for the porous medium equation with a source” Numerical Methods for Partial Differential Eq, 20, 552--575, 2004
  11. R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “Superfast quenching” Journal Differential Equations, 199, 189--209, 2004
  12. M. Negreanu, E. Zuazua “Discrete Ingham inequalities and applications”, CRAS Paris, Serie I. Math 338 pp 281-286 (2004)
  13. L. Popescu and A. Rodríguez-Bernal. On a singularly perturbed wave equation with dynamic boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A, 134(2):389-413, 2004.
  14. R. Dager, “Networks of strings: modelization and control of vibrations”, e-STA, vol 1, (2004)
  15. R. Dager, “Observation and control of vibrations in tree-shaped networks of strings” SIAM Journal on Control and Optimization 43, 590-623, (2004)

Year 2005

  1. J.M. Arrieta, A. Rodríguez-Bernal. "Ill posed problems with supercritical nonlinearities. International Conference on Differential Equations (EQUADIFF'03) Hasselt, Belgium. World Scientific, pp 277 280, (2005) ,
  2. J.M. Arrieta, A. Jiménez-Casas, A. Rodríguez-Bernal "Nonhomogenous flux condition as limit of localized reactions. International Conference on Differential Equations (EQUADIFF'03) Hasselt, Belgium. World Scientific, pp 293-295, (2005),
  3. J.M. Arrieta, S. M. Bruschi "Problemas de valor de fronteira em domínios com oscilaçōes na fronteira", Seminario Brasileiro de Análise, Edición nº 62, Noviembre (2005),
  4. R. Ferreira, A. de Pablo, F. Quiros y J. L. Vázquez, “Blow-up. El problema matemático de explosión para ecuaciones y sistemas de reacción difusión” Boletín de la Soc. Española de Matemática Aplicada, 32, 75-111, 2005
  5. P. Quittner and A. Rodríguez-Bernal. Complete and energy blow-up in parabolic problems with nonlinear boundary conditions. Nonlinear Anal. TMA, 62(5):863-875, (2005).
  6. A. Rodríguez-Bernal and A. Vidal-López. Extremal equilibria and asymptotic behavior of parabolic nonlinear reaction-diffusion equations. In Nonlinear elliptic and parabolic problems: A Special Tribute to the Work of H. Amann., volume 64 of Progr. Nonlinear Differential Equations Appl., pages 509-516. Birkhäuser, Basel, (2005).
  7. A. Rodríguez-Bernal. Parabolic equations in locally uniform spaces. In Nonlinear elliptic and parabolic problems, volume 64 of Progr. Nonlinear Differential Equations Appl., pages 421-432. Birkhäuser, Basel, (2005).
  8. A. Rodríguez-Bernal and R. Willie. Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic problem. Discrete Contin. Dyn. Syst. Ser. B, 5(2):385-410, (2005).
  9. R. Ferreira, A. de Pablo y M. Pérez-Llanos, “Numerical blow-up for the p-laplacian equation with a source”, Computational Methods in Applied Mathematics 5, 137-154, (2005)
  10. R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “On the quenching set for a fast diffusion equation.Regional quenching”, Proceedings of the Royal Society of Edinburgh. Section A, 135, 585—601, (2005)
  11. A. Jiménez-Casas, “Metastable solutions for the thin-interface limit of a phase-field model” Nonlinear Analysis, Volume 63, Issues 5-7, 963-970, (2005)
  12. A. Jiménez-Casas, “Well posedness and asymptotic behavior of a closed loop thermosyphon”, World Scientific Publications pp: 59-74, (2005)

Year 2006

  1. R. Dager, E. Zuazua, “Wave propagation, observation and control of 1-D flexible multi-structures”, Mathematiques et Applications 50, Springer-Berlag Berlin (2006), x+221 pp. ISBN: 978-3-540-27239-9; 3-540-27239-9 [LIBRO DE INVESTIGACIÓN]
  2. I. Bosch, A. M. Minzoni, “Chaotic behavior in a singularly perturbed system” Nonlinearity 19, 1535-1551 (2006)
  3. M. Negreanu, E. Zuazua “Discrete Ingham inequalities and applications”, SIAM Journal of Numerical Analysis, Volume 44, Issue I (2006) pp 412-4448
  4. A. Rodríguez-Bernal and A. Vidal, “Asymptotic behavior of positive solutions of nonautonomous reaction-diffusion equations”, Bol. Soc. Esp. Mat. Apl. 34, 99-104 (2006)
  5. J. C. Robinson, A. Vidal López, “Minimal periods of semilinear evolution equations with Lipschitz nonlinearity”. Jounal of Differential Equations, Vol. 220 (2), 396-406 (2006).
  6. J.M. Arrieta, S. M. Bruschi "Boundary Oscillations and Nonlinear Boundary Conditions", Comptes Rendus Mathematique, t. 343, Series I, pp. 99-104 (2006)
  7. J.M. Arrieta, A. Rodríguez-Bernal, J. Valero "Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity", International Journal of Bifurcation and Chaos 16, n. 10, pp. 2965-2984 (2006)
  8. J.M. Arrieta A.N. Carvalho and G. Lozada-Cruz "Dynamics in dumbbell domains I. Continuity of the set of equilibria" Journal of Differential Equations 231, Issue 2, pp. 551-597, (2006),
  9. R. Ferreira, A. de Pablo y J. L. Vázquez, “Classification of blow-up with nonlinear diffusion and localized reaction”, Journal Differential Equations 231, 195—211, (2006)
  10. R. Ferreira, A. de Pablo, G. Reyes y A. Sánchez, “The interfaces of an inhomogeneous porous médium equation with convection” Communications in Partial Differential Equations , 31, 497—514, (2006)
  11. R. Ferreira, A. de Pablo y J. D. Rossi, “Blow-up for a degenerate diffusion problem not in divergence form”, Indiana University Mathematics Journal , 55, 955—974, (2006)
  12. R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “Non-simultaneous quenching in a system of heat equations coupled at the boundary” Zeitschrift fur Angewandte Mathematik und Physik , 57, 586—594, (2006).
  13. R. Pardo, V. M. Pérez-García, “Dissipative solutions that cannot be trapped”, Phys. Rev. Lett. 97, (2006).
  14. R. Dager, A. Presa, “Duality of the space of germs of harmonic vector fields on a compact”, C.R. Acad. Sci. Paris, Serie I, 343 (1), 19-22, (2006)
  15. R. Dager, “Insensitizing controls for the 1-D wave equation”, SIAM Journal on Control and Optimization 45, 1758-1768, (2006)

Year 2007

  1. J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal "Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity", Proc. of the Royal Society of Edinburgh A, Vol.137, Issue 02, 225-252. (2007),
  2. A. Rodríguez-Bernal, R. Willie, “Nesting inertial manifolds of reaction-diffusion equations and large diffusivity. Nonlinear Analisis 67, 70-93 (2007)
  3. A. Rodríguez-Bernal, A. Vidal, “Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems”, Disc. Cont. Dyn. Systems 18, 537--567, (2007)
  4. J.A. Langa, J.C. Robinson, A.Rodríguez-Bernal, A. Suárez, A. Vidal, “Existence and non-existence of unbounded forward attractor for a class of nonautonomous reaction diffusion equations”. Disc. Cont. Dyn. Systems 18, 483—497, (2007)
  5. J.M. Arrieta, S.M. Bruschi “Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformation”, Mathematical Models and Methods in Applied Sciences 17, nº 10 (2007)
  6. R. Ferreira, A. de Pablo y J. D. Rossi, “Blow-up with logarithmic nonlinearities”, Journal Differential Equations 240, Issue 1, Pages 196-215 (2007)
  7. J.C. Robinson, A. Rodríguez-Bernal, A. Vidal-López, “Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems”, Journal of Differential Equations 238, 289-337 (2007)
  8. U. Brauer, L. Karp, “Local existence of classical solutions of the Einstein-Euler system using weighted Sobolev spaces of fractional order”, Comptes Rendus Mathematique 345, pp 49-54 (2007)
  9. J. A. Langa, J. C. Robinson, A. Suárez, A. Vidal-López, “The stability of attractors for non-autonomous perturbation of gradient-like systems”, Journal of Differential Equations 234, 605-627 (2007).
  10. J. M. Arrieta and A. Rodríguez-Bernal, “Blow up versus global boundedness of solutions of reaction diffusion equations with nonlinear boundary conditions”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 1-7
  11. J. M. Arrieta, A. Jimenéz-Casas and A. Rodríguez-Bernal, “Robin type conditions arising from concentrated potentials”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 157-164
  12. A. de Pablo, M. Pérez-Llanos and R. Ferreira, “Numerical blow-up for the p-Laplacian equation with a nonlinear source” Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 363-367
  13. J. M. Arrieta, N. Moya, A. Rodríguez-Bernal, “Dissipative dynamics of reaction diffusion equations in R^N” Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007), pp 405-414.
  14. A. Rodríguez-Bernal and A. Vidal-López, “Extremal equilibria for parabolic non-linear reaction-diffusion equations”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 531-539
  15. J.M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Dissipative parabolic equations in locally uniform spaces", Mathematische Nachrichten 280, Issue 15 (2007)
  16. Bogoya, Mauricio; Ferreira, Raul; Rossi, Julio D. Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models. Proc. Amer. Math. Soc. 135 (2007), no. 12, 3837--3846

Year 2008

  1. J.M. Arrieta:" On boundedness of solutions of reaction-diffusion equations with nonlinear boundary conditions" Proceedings of the American Mathematical Society 136, Issue 1, pp. 151-160 (2008)
  2. J.M. Arrieta, N. Moya, A. Rodríguez-Bernal: "On the finite dimension of attractors of parabolic problems in RN with general potentials", Nonlinear Analysis, Theory Methods and Applications 68, Issue 5, pp. 1082-1099 (2008)
  3. J.M. Arrieta, A. Jimenez-Casas, A. Rodriguez-Bernal "Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating in the boundary" Revista Matemática Iberoamericana, 24 nº 1, pp. 183- 211 (2008)
  4. A. Jiménez Casas, "Invariant regions and global existence for a phase field model", Discrete and Cont. Dynam. Systems. 1, nº 2 273-281 (2008)
  5. M. Bogoya, R. Ferreira, J.D. Rossi, "A nonlocal nonlinear diffusion equation with blowing up boundary conditions", Journal of Mathematical Analysis and Applications 337, nº 2, 1284-1294 (2008)
  6. A. Rodríguez-Bernal, A. Vidal-López, "Semiestable extremal ground states for nonlinear evolution equations in unbounded domains", Journal of Mathematical Analysis and Applications 338, nº 1, 675-694 (2008)
  7. J.M. Arrieta, A. Rodríguez-Bernal, J. Rossi, "The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary", Proceedings of the Royal Society of Edinburgh 138A 223-237 (2008),
  8. Ferreira, Raúl; de Pablo, Arturo; Pérez-Llanos, Mayte; Rossi, Julio D. Incomplete quenching in a system of heat equations coupled at the boundary. J. Math. Anal. Appl. 346 (2008), no. 1, 145--154.
  9. A. Rodríguez-Bernal, A. Vidal-López, Extremal equilibria for nonlinear parabolic equations in bounded domains and applications”. Journal of Di?erential Equations 244, 2983-3030 (2008).

Year 2009

  1. R. Ferreira, “Numerical quenching for the semilinear heat equation with a singular absorption”, J. Comput. Appl. Math. 228, 92—103, (2009)
  2. J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, "Equilibria and global dynamics of a problem with bifurcation from infinity", Journal of Differential Equations 246, pp. 2055-2080 (2009).
  3. R. Pardo, V.M. Pérez-García, ``Localization phenomena in Nonlinear Schrödinger equations with spatially inhomogeneous nonlinearities: Theory and applications to Bose-Einstein condensates. Physica D: Nonlinear Phenomena, Vol. 238, 1352-1360. (2009)
  4. J.M. Arrieta, A. N. Carvalho, G. Lozada-Cruz , “Dynamics in dumbbell domains II. The limiting problem” Journal of Differential Equations 247, pp 174-202 (2009)
  5. J.M. Arrieta, A. N. Carvalho, G. Lozada-Cruz , “Dynamics in dumbbell domains III. Continuity of attractors”, Journal of Differential Equations, 247, pp. 225-259, (2009)
  6. J. Langa, J. Robinson, A. Rodriguez-Bernal, A. Suárez, “Permanence and asymptotically stable complete trajectories for non-autonomous Lotka-Volterra models with diffusion”, SIAM J. Math. Anal., Volume 40, Pages 2179-2216, (2009)
  7. A. Rodríguez-Bernal, “Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations”, Discrete and Continuous Dynamical Systems A., vol. 25, 1003-1032 (2009).
  8. A. Jiménez Casas, A. Rodríguez Bernal, “Asymptotic behaviour of a parabolic problem with terms concentrated in the boundary”, Nonlinear Analysis, Theory Methods and Applications 71, pp: e-2377-2383 (2009)
  9. A.Jiménez-Casas, A. Rodríguez–Bernal, “Atractor de un problema parabólico con términos concentrados en la frontera”. Actas CEDYA 2009. XXI CEDYA / XI CMA. Ciudad Real. Sema. 2009. ISBN: 978-84-692-64
  10. J.Cholewa, A. Rodríguez Bernal,“Algunas propiedades dinámicas de semigrupos monótonos y aplicaciones”. Actas CEDYA 2009. XXI CEDYA / XI CMA. Ciudad Real. Sema. 2009. ISBN: 978-84-692-64
  11. Rodríguez Bernal, A.Vidal López, “Dinámica asintótica de problemas de reacción-difusión con balance no lineal entre la reacción en el interior y en la frontera” Actas CEDYA 2009. XXI CEDYA / XI CMA. Ciudad Real. Sema. 2009. (6 páginas). ISBN: 978-84-692-64
  12. R. Pardo, H. Herrero, “Existencia de soluciones para un problema de Bénard-Marangoni”. Actas CEDYA 2009. XXI CEDYA / XI CMA. Ciudad Real. Sema. 2009. (6 páginas). ISBN: 978-84-692-64
  13. R. Ferreira, M. Pérez-Llanos, Numerical quenching of a system of equations coupled at the boundary, Mathematical Methods in the Applied Sciences, 32, pp. 2439-2459, (2009)

Year 2010

  1. J. M. Arrieta, R. Ferreira, A. de Pablo y J. D. Rossi, Stability of the blow-up time and the blow-up set under perturbations, Discrete and Continuous Dynamical Systems A 26, # 1, pp 43-61 (2010)
  2. J.M. Arrieta, N. Consul and S. Oliva , “Cascades of Hopf bifurcations from boundary delay”, Journal of Mathematical Analysis and Applications 361, pp. 19-37 (2010)
  3. J. M. Arrieta, D. Krejcirik, "Geometric vs. spectral convergence for the Neumann Laplacian under exterior perturbations of the domain", Integral methods in science and engineering. Vol. 1, pp:9-19, Birkhäuser Boston, Inc., Boston, MA, (2010)
  4. J. M. Arrieta, S.M. Bruschi, "Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of non uniform Lispschitz deformation" Discrete and Continuous Dynamical Systems B, Volume 14, Number 2, pp. 327-351 (2010)
  5. J. M. Arrieta, M.C. Pereira, “Elliptic problems in thin domains with highly oscillating boundaries”, Bolletin de la Sociedad Española de Matemática Aplicada 51, pp:17-24 (2010)
  6. J.M. Arrieta, N. Consul, S. Oliva “On the supercriticality of the first Hopf bifurcation in a delay boundary problem” International Journal of Bifurcation and Chaos 20, #9 (2010)
  7. J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, “Infinite resonant solutions and turning points in a problem with unbounded bifurcation” International Journal of Bifurcation and Chaos 20, #9 (2010)
  8. J.A. Langa, A. Rodríguez-Bernal and A. Suárez, "The sub-supertrajectory method. Application to the nonautonomous competition Lotka-Volterra model". Bol. Soc. Esp. Mat. Apl. 51, 91--98 (2010).
  9. J.A. Langa, A. Rodríguez-Bernal and A. Suárez, "On the long time behaviour of non-autonomous Lotka-Volterra models with diffusion via the sub-super trajectory method". Journal of Differential Equations 249, 414--445 (2010).
  10. J. Cholewa, A. Rodríguez-Bernal, "Extremal equilibria for monotone semigroups with applications to evolutionary equations". Journal of Differential Equations 249, 485--525 (2010).

Year 2011

  1. J. M. Arrieta, M.C. Pereira, Homogenization in a thin domain with an oscillatory boundary, Journal de Mathématiques Pures et Apliquées 96, #1, pp: 29-57 (2011)
  2. J.M. Arrieta, M. López-Fernández, E. Zuazua, On a nonlocal moving frame approximation of traveling waves Comptes Rendus Mathematique 349 pp. 753-758 (2011)
  3. J.M. Arrieta, A.N. Carvalho, M.C. Pereira, R.P. da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory, Methods and Applications 74, #15 pp: 5111-5132 (2011)
  4. R. Ferreira, Quenching phenomena for a non-local diffusion equation with a singular absorption. Israel Journal of Mathematics, Israel J. Math. 184 pp. 387–402 (2011)
  5. C. Brändle, E. Chasseigne, R. Ferreira, Unbounded solutions of the nonlocal heat equation, Commun. Pure Appl. Anal. 10 no. 6, pp. 1663–1686, (2011)
  6. A. Rodríguez-Bernal, Perturbation of analytic semigroups in scales of banach spaces and applications to linear parabolic equations with low regularity data, SeMA Journal No. 53, pp. 3–54, (2011)
  7. A. Jiménez-Casas, A. Rodríguez-Bernal, Singular limit for a nonlinear parabolic equation with terms concentrating on the boundary, J. Math. Anal. Appl. 379, no. 2, pp. 567–588, (2011).
  8. Uwe Brauer, Lavi Karp, Well-posedness of the Einstein–Euler system in asymptotically flat pacetimes: The constraint equations, Journal of Diff. Equations 251, Issue 6, pp. 1428-1446 (2011)
  9. A. Jiménez-Casas, A. Rodríguez-Bernal, Dynamic boundary conditions as limit of singularity perturbed parabolic problems, Discrete and Continuous Dynamical System A, Supplement 2011. Dedicated to the 8th AIMS Conference.pp. 737-746, (2011).
  10. R. Pardo, H. Herrero and S. Hoyas, Theoretical study of a Bénard-Marangoni problem, Journal of Mathematical Analysis and Applications, Vol. 376, pp. 231-246 (2011)
  11. Juan J. Nieto, Rosana Rodríguez, Manuel Villanueva, Green’s Function for the Periodic Boundary Value Problem Related to a First-order Impulsive Differential Equation and Applications to Functional Problems, Differ. Equ. Dyn. Syst. 19, no. 3, 199–210 (2011)
  12. Juan J. Nieto, Rosana Rodríguez, Manuel Villanueva; Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optimization and Decision Making, Volume 10 Issue 4, (2011).


Year 2012

  1. R. Pardo, A.L. Pereira, J.C. Sabina de Lis, “The tangential variation of a localized flux-type eigenvalue problem”, Journal of Differential Equations, 252, Issue 3, pp. 2104–2130 (2012)
  2. A. Rodríguez-Bernal, A singular perturbation in a linear parabolic equation with terms concentrating on the boundary, Revista Matemática Complutense 25, nº.1, pp. 165–197 (2012).
  3. J. W. Cholewa, A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $R^N$, Nonlinear Analysis TMA 75, pp. 194-210 (2012).
  4. J.M. Arrieta, M. López-Fernández, E. Zuazua, “Approximating travelling waves by equilibria of non local equations”, Asymptotic Analysis 78 pp. 145-186 (2012)
  5. J.M. Arrieta, A.N. Carvalho, J.A. Langa, A. Rodríguez-Bernal, Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations, Journal of Dynamics and Differential Equations 24, #3 pp 427-481 (2012)
  6. J. W. Cholewa, A. Rodriguez-Bernal, ``Dissipative mechanism of a semilinear higher order parabolic equation in $\R^N$.   Nonlinear  Analysis TMA 75, 3510--3530 (2012).
  7. J. W. Cholewa, A. Rodriguez-Bernal, ``On the Cahn--Hilliard equation in $H^{1}(\R^{N})$.  Journal of  Differential Equations 253, 3678--3726 (2012). 
  8. A. Jiménez-Casas and A. Rodríguez-Bernal, ``Dynamic   boundary conditions as a singular limit of parabolic problems with  terms concentrating at the boundary.   Dynamics of Partial Differential Equations 9,   341--368 (2012). 
  9. R. Pardo, Bifurcation for an elliptic problem with nonlinear boundary conditions, Integración. Temas de matemáticas. Vol 30, Nº 2, 151-226 (2012)
  10. R. Pardo, A. Castro, “Resonant solutions and turning points in an elliptic problem with oscillatory boundary conditions”, Pacific Journal of Mathematics 257 pp. 75-90 (2012)
  11. R. Ferreira, A. de Pablo, M. Pérez-Llanos and J. D. Rossi , “Critical exponents for a parabolic semilinear equation with variable reaction”, Proc. Roy. Soc. Edinburgh Sect. A 142, no. 5, 1027–1042 (2012)
  12. R. Ferreira and M. Pérez-Llanos "Blow-up for the non-local p-Laplacian equation with a reaction term", Nonlinear Anal. 75, no. 14, 5499–5522 (2012)

Year 2013

  1. J. Arrieta "The Neumann problem in thin domains with very highly oscillatory boundaries" (doi: 10.1016/j.jmaa.2013.02.061) Journal of Mathematical Analysis and Applications 404, #1 pp 86-104 (2013) (with M.C. Pereira).
  2. J. Arrieta "Rate of convergence of global attractors of some perturbed reaction-diffusion problems" Topological Methods in Nonlinear Analysis 41 (2), pp. 229-253 (2013) (with F.D.M. Bezerra and A.N. Carvalho)
  3. J. Arrieta. "Spectral stability results for higher order operators under perturbations of the domain" (doi:10.1016/j.crma.2013.10.001) C. R. Acad.Sci.Paris, Ser.I 351(2013)725–730 (with Pier D. Lamberti)
  4. F. Cortez, A. Rodríguez-Bernal,``PDEs in moving time dependent domains, In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Springer Series: Understanding Complex Systems, 559-578 (2013).
  5. Chasseigne, Emmanuel; Sastre-Gómez, Silvia; A nonlocal two phase Stefan problem. Differential Integral Equations 26 (2013), no. 11-12, 1335–1360.
  6. Yasappan J., A. Jiménez Casas y Castro M. Título: Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis, and Numerical Experiments Abstract and Applied Analysis, vol 2013, p1-20
  7. J. Yasappan, A. Jiménez Casas, M. Castro “Chaotic behavior of the closed loop thermosyphon model with memory effects”, Chaotic Modeling and Simulation 2, pp 281-288 (2013)

Year 2014

  1. A. Rodriguez-Bernal and A. Vidal-López, “A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities”. Communications on Pure Applied Analysis 13, 635–644 (2014).
  2. A. Jiménez-Casas, A. Rodríguez-Bernal, “A model of traffic flow in a network”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 193–200, (2014). ISBN 978-3-319-06952-4
  3. A. Rodríguez-Bernal, S. Sastre, “Nonlinear nonlocal reaction–diffusion equations”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 53–61, (2014). ISBN 978-3-319-06952-4
  4. C. Quesada, A. Rodríguez-Bernal, “Perturbation of analytic semigroups in uniform spaces in RN”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 41–49, (2014). ISBN 978-3-319-06952-4
  5. C. Quesada, A. Rodríguez-Bernal, “Smoothing and perturbation for some fourth order linear parabolic equations in RN”, Journal of Mathematical Analysis and Applications, Volume 412, Issue 2, pp. 1105-1134 (2014)
  6. J.M. Arrieta, E. Santamaría, "Estimates on the Distance of Inertial Manifolds". Discrete and Continuous Dynamical Systems A, 34 Vol 10 pp. 3921-3944 (2014)
  7. J.M. Arrieta, G. Barbatis, "Stability estimates in H10 for solutions of elliptic equations in varying domains” Mathematical Methods in Applied Science, 37, 2, pp.180-186 (2014)
  8. J.M. Arrieta, M. Villanueva-Pesqueira "Locally periodic thin domains with varying period" C.R. Acad. Sci. Paris Ser I. 352 pp 397-403 (2014)
  9. J.M. Arrieta, M. Villanueva-Pesqueira, “Fast and slow boundary oscillations in a thin domain”. Advances in Differential Equations and Applications SEMA SIMAI Springer Series, Vol. 4, 2014, pp 13-22 (2014) ISBN 978-3-319-06952-4
  10. J.M. Arrieta, M. Villanueva-Pesqueira; “Thin domains with doubly oscillatory boundary”, Mathematical Methods in Applied Science, 37, 2 (2014), 158-166.
  11. J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, “Localization phenomena in a degenerate logistic equation” Electronic Journal of Differential Equations 21, pp 1-9 (2014)
  12. J.M. Arrieta, R. Pardo, A.Rodríguez–Bernal, “A degenerate parabolic logistic equation”, Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 3–10, (2014). ISBN 978-3-319-06952-4.
  13. J.W. Cholewa, A. Rodriguez-Bernal, “A note on the Cahn-Hilliard equation in H1(RN) involving critical exponent”, Math. Bohem. 139, pp. 269-283 (2014)
  14. J.W. Cholewa, A. Rodriguez-Bernal, “Critical and supercritical higher order parabolic problems in RN”, Nonlinear Analysis 104, pp. 50-74 (2014)
  15. U. Brauer and L.Karp. “Local existence of solutions of self gravitating relativistic perfect fluids” Comm. Math. Physics, 325:105–141, (2014).
  16. Chasseigne, Emmanuel ; Ferreira, Raúl . Isothermalisation for a non-local heat equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 4, 1115--1132.


Year 2015

  1. U. Brauer and L. Karp, Elliptic equations in weighted Besov spaces on asymptotically flat Riemannian manifolds, Manuscripta Math., 148(1-2), 59-97 (2015).
  2. J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, "Asymptotic behavior of degenerate logistic equations”, Journal of Differential Equations, 259, #11, pp.6368-6398 (2015)
  3. A. Castro, R. Pardo, “A priori bounds for positive solutions of subcritical elliptic equations”, Rev Mat Complut 28, pp: 715-731 (2015)
  4. S. Sastre, “Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves”, Nonlinear Analysis, v. 125, p. 725-731, (2015).
  5. G, Griso, M. Villanueva-Pesqueira. “Straight rod with different order of thickness”, Asymptotic Analysis, 94, 3-4 (2015), 255-291. ISSN: 0921-7134
  6. J. Yasappan, A. Jiménez-Casas, M. Castro “Stailizing interplay between thermosiffusion and viscoelasticity in a closed-loop thermosyphon” Discrete and Continuous Dynamical Systems B, Vol 20, N. 9 pp. 3267-3299 (2015)
  7. Ferreira, Raúl ; Rossi, Julio D. Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions. Discrete Contin. Dyn. Syst. 35 (2015), no. 4, 1469--1478.

Year 2016

  1. Ferreira, Raúl ; Pérez-Llanos, Mayte . Limit problems for a Fractional p-Laplacian as p→∞. NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, 23:14.
  2. A. Rodríguez-Bernal, S. Sastre, “Linear nonlocal diffusion problems in metric measure spaces”. Proceedings of the Royal Society of Edinburg 146, 833-863 (2016). JCR Math, Q1, 61/312, Appl. Math, Q2, 95/254.
  3. A. Rodriguez-Bernal and A. Vidal-Lopez, “Well poshness and and asymptotic behavior of supercritical reaction-diffusion equations with nonlinear boundary conditions”. Dynamics of Partial Differential Equations 13, 273–295 (2016). JCR Appl. Math, Q3, 161/254.
  4. J. Cholewa, A. Rodríıguez-Bernal, “Linear higher order parabolic problems in locally uniform Lebesgue’s spaces”. Journal of Mathematical Analysis and Applications, JCR Math, Q1, 56/312, Appl. Math, Q1, 88/254.
  5. A. Rodríguez-Bernal, “The heat equaton with general periodic boundary conditions”,Potential Analysis, JCR Math, Q1, 67/312.
  6. A.Jiménez–Casas, A. Rodríguez–Bernal, “Some general models of traffic flow in anisolated network”. Mathematical Methods in the Applied Sciences (22 páginas). JCR Appl. Math, Q2, 90/254.


Year 2017

  1. Ferreira, Raúl; Pérez-Llanos, Mayte A nonlocal operator breaking the Keller-Osserman condition. Adv. Nonlinear Stud. 17 (2017), no. 4, 715–725.
  2. Mavinga, Nsoki; Pardo, Rosa Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 649–671.
  3. Castro, Alfonso; Pardo, Rosa Infinitely many stability switches in a problem with sublinear oscillatory boundary conditions. J. Dynam. Differential Equations 29 (2017), no. 2, 485–499.
  4. Castro, Alfonso; Pardo, Rosa A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.
  5. Mavinga, N.; Pardo, R. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188
  6. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains. Integral Equations Operator Theory 89 (2017), no. 3, 377–408.
  7. Arrieta, José M.; Santamaría, Esperanza Distance of attractors of reaction-diffusion equations in thin domains. J. Differential Equations 263 (2017), no. 9, 5459–5506.
  8. Arrieta, José M.; Lamberti, Pier Domenico Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differential Equations 263 (2017), no. 7, 4222–4266.
  9. Arrieta, José M.; Villanueva-Pesqueira, Manuel Thin domains with non-smooth periodic oscillatory boundaries. J. Math. Anal. Appl. 446 (2017), no. 1, 130–164.
  10. Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. J. Abstr. Differ. Equ. Appl. 8 (2017), no. 2, 1–69.
  11. Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal Some general models of traffic flow in an isolated network. Math. Methods Appl. Sci. 40 (2017), no. 11, 3982–4000.
  12. Rodríguez-Bernal, Aníbal The heat equation with general periodic boundary conditions. Potential Anal. 46 (2017), no. 2, 295–321.
  13. Quesada, Carlos; Rodríguez-Bernal, Aníbal Second order linear parabolic equations in uniform spaces in RN. Rev. Mat. Complut. 30 (2017), no. 1, 63–78.
  14. Cholewa, Jan W.; Rodriguez-Bernal, Anibal Linear higher order parabolic problems in locally uniform Lebesgue's spaces. J. Math. Anal. Appl. 449 (2017), no. 1, 1–45.
  15. Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2669–2680.
  16. Jiménez-Casas, Ángela Asymptotic Behaviour of the Nonlinear Dynamical System Governing a Thermosyphon Model. Chaotic Modeling and Simulation (CMSIM).

Year 2018

  1. Ferreira, R.; de Pablo, A. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions. Rev. Mat. Complut. 31 (2018), no. 3, 805–832.
  2. Ferreira, Raul Blow-up for a semilinear heat equation with moving nonlinear reaction. Electron. J. Differential Equations 2018, Paper No. 32, 11 pp.
  3. Damascelli, Lucio; Pardo, Rosa A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl. 41 (2018), 475–496
  4. Arrieta, José M.; Santamaría, Esperanza C1,θ-estimates on the distance of inertial manifolds. Collect. Math. 69 (2018), no. 3, 315–336. 35K90 (35B42)
  5. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Boundary homogenization for a triharmonic intermediate problem. Math. Methods Appl. Sci. 41 (2018), no. 3, 979–985.
  6. Robinson, James C.; Rodríguez-Bernal, Aníbal Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Adv. Math. 334 (2018), 488–543.
  7. Jiménez-Casas, Ángela Metastable solutions for the thin-interface limit of a p-Laplacian phase field model. Math. Methods Appl. Sci. 41 (2018), no. 16, 6851–6865
  8. Jiménez-Casas, Ángela Asymptotic Behaviour of a Viscoelastic Thermosyphon Model.Chaotic Modeling and Simulation (CMSIM).
  9. Rodríguez Gomez, Alberto; Jiménez-Casas, Ángela Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform. American Journal of Engineering Research(AJER)
  10. Henry, David; Sastre-Gomez, Silvia Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity. Differential Integral Equations 31 (2018), no. 1-2, 1–26
  11. Brauer, Uwe; Karp, Lavi Local existence of solutions to the Euler-Poisson system, including densities without compact support. J. Differential Equations 264 (2018), no. 2, 755–785.

Year 2019

  1. Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554

accepted for publication

  1. Brauer, U.; Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler--Poisson system accepted for publication in Journal d'Analyse Mathematique (2019).


Books

  1. S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007
  2. R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).
  3. R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta