|
Publications
De Cadedif
Publications in peer reviewed journals
Publications before 2010
Year 2011
- J. M. Arrieta, M.C. Pereira, Homogenization in a thin domain with an oscillatory boundary, Journal de Mathématiques Pures et Apliquées 96, #1, pp: 29-57 (2011)
- J.M. Arrieta, M. López-Fernández, E. Zuazua, On a nonlocal moving frame approximation of traveling waves Comptes Rendus Mathematique 349 pp. 753-758 (2011)
- J.M. Arrieta, A.N. Carvalho, M.C. Pereira, R.P. da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory, Methods and Applications 74, #15 pp: 5111-5132 (2011)
- R. Ferreira, Quenching phenomena for a non-local diffusion equation with a singular absorption. Israel Journal of Mathematics, Israel J. Math. 184 pp. 387–402 (2011)
- C. Brändle, E. Chasseigne, R. Ferreira, Unbounded solutions of the nonlocal heat equation, Commun. Pure Appl. Anal. 10 no. 6, pp. 1663–1686, (2011)
- A. Rodríguez-Bernal, Perturbation of analytic semigroups in scales of banach spaces and applications to linear parabolic equations with low regularity data, SeMA Journal No. 53, pp. 3–54, (2011)
- A. Jiménez-Casas, A. Rodríguez-Bernal, Singular limit for a nonlinear parabolic equation with terms concentrating on the boundary, J. Math. Anal. Appl. 379, no. 2, pp. 567–588, (2011).
- Uwe Brauer, Lavi Karp, Well-posedness of the Einstein–Euler system in asymptotically flat pacetimes: The constraint equations, Journal of Diff. Equations 251, Issue 6, pp. 1428-1446 (2011)
- A. Jiménez-Casas, A. Rodríguez-Bernal, Dynamic boundary conditions as limit of singularity perturbed parabolic problems, Discrete and Continuous Dynamical System A, Supplement 2011. Dedicated to the 8th AIMS Conference.pp. 737-746, (2011).
- R. Pardo, H. Herrero and S. Hoyas, Theoretical study of a Bénard-Marangoni problem, Journal of Mathematical Analysis and Applications, Vol. 376, pp. 231-246 (2011)
- Juan J. Nieto, Rosana Rodríguez, Manuel Villanueva, Green’s Function for the Periodic Boundary Value Problem Related to a First-order Impulsive Differential Equation and Applications to Functional Problems, Differ. Equ. Dyn. Syst. 19, no. 3, 199–210 (2011)
- Juan J. Nieto, Rosana Rodríguez, Manuel Villanueva; Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optimization and Decision Making, Volume 10 Issue 4, (2011).
Year 2012
- R. Pardo, A.L. Pereira, J.C. Sabina de Lis, “The tangential variation of a localized flux-type eigenvalue problem”, Journal of Differential Equations, 252, Issue 3, pp. 2104–2130 (2012)
- A. Rodríguez-Bernal, A singular perturbation in a linear parabolic equation with terms concentrating on the boundary, Revista Matemática Complutense 25, nº.1, pp. 165–197 (2012).
- J. W. Cholewa, A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $R^N$, Nonlinear Analysis TMA 75, pp. 194-210 (2012).
- J.M. Arrieta, M. López-Fernández, E. Zuazua, “Approximating travelling waves by equilibria of non local equations”, Asymptotic Analysis 78 pp. 145-186 (2012)
- J.M. Arrieta, A.N. Carvalho, J.A. Langa, A. Rodríguez-Bernal, Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations, Journal of Dynamics and Differential Equations 24, #3 pp 427-481 (2012)
- J. W. Cholewa, A. Rodriguez-Bernal, ``Dissipative mechanism of a semilinear higher order parabolic equation in $\R^N$. Nonlinear Analysis TMA 75, 3510--3530 (2012).
- J. W. Cholewa, A. Rodriguez-Bernal, ``On the Cahn--Hilliard equation in $H^{1}(\R^{N})$. Journal of Differential Equations 253, 3678--3726 (2012).
- A. Jiménez-Casas and A. Rodríguez-Bernal, ``Dynamic boundary conditions as a singular limit of parabolic problems with terms concentrating at the boundary. Dynamics of Partial Differential Equations 9, 341--368 (2012).
- R. Pardo, Bifurcation for an elliptic problem with nonlinear boundary conditions, Integración. Temas de matemáticas. Vol 30, Nº 2, 151-226 (2012)
- R. Pardo, A. Castro, “Resonant solutions and turning points in an elliptic problem with oscillatory boundary conditions”, Pacific Journal of Mathematics 257 pp. 75-90 (2012)
- R. Ferreira, A. de Pablo, M. Pérez-Llanos and J. D. Rossi , “Critical exponents for a parabolic semilinear equation with variable reaction”, Proc. Roy. Soc. Edinburgh Sect. A 142, no. 5, 1027–1042 (2012)
- R. Ferreira and M. Pérez-Llanos "Blow-up for the non-local p-Laplacian equation with a reaction term", Nonlinear Anal. 75, no. 14, 5499–5522 (2012)
Year 2013
- J. Arrieta "The Neumann problem in thin domains with very highly oscillatory boundaries" (doi: 10.1016/j.jmaa.2013.02.061) Journal of Mathematical Analysis and Applications 404, #1 pp 86-104 (2013) (with M.C. Pereira).
- J. Arrieta "Rate of convergence of global attractors of some perturbed reaction-diffusion problems" Topological Methods in Nonlinear Analysis 41 (2), pp. 229-253 (2013) (with F.D.M. Bezerra and A.N. Carvalho)
- J. Arrieta. "Spectral stability results for higher order operators under perturbations of the domain" (doi:10.1016/j.crma.2013.10.001) C. R. Acad.Sci.Paris, Ser.I 351(2013)725–730 (with Pier D. Lamberti)
- F. Cortez, A. Rodríguez-Bernal,``PDEs in moving time dependent domains, In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Springer Series: Understanding Complex Systems, 559-578 (2013).
- Chasseigne, Emmanuel; Sastre-Gómez, Silvia; A nonlocal two phase Stefan problem. Differential Integral Equations 26 (2013), no. 11-12, 1335–1360.
- Yasappan J., A. Jiménez Casas y Castro M. Título: Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis, and Numerical Experiments Abstract and Applied Analysis, vol 2013, p1-20
- J. Yasappan, A. Jiménez Casas, M. Castro “Chaotic behavior of the closed loop thermosyphon model with memory effects”, Chaotic Modeling and Simulation 2, pp 281-288 (2013)
Year 2014
- A. Rodriguez-Bernal and A. Vidal-López, “A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities”. Communications on Pure Applied Analysis 13, 635–644 (2014).
- A. Jiménez-Casas, A. Rodríguez-Bernal, “A model of traffic flow in a network”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 193–200, (2014). ISBN 978-3-319-06952-4
- A. Rodríguez-Bernal, S. Sastre, “Nonlinear nonlocal reaction–diffusion equations”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 53–61, (2014). ISBN 978-3-319-06952-4
- C. Quesada, A. Rodríguez-Bernal, “Perturbation of analytic semigroups in uniform spaces in RN”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 41–49, (2014). ISBN 978-3-319-06952-4
- C. Quesada, A. Rodríguez-Bernal, “Smoothing and perturbation for some fourth order linear parabolic equations in RN”, Journal of Mathematical Analysis and Applications, Volume 412, Issue 2, pp. 1105-1134 (2014)
- J.M. Arrieta, E. Santamaría, "Estimates on the Distance of Inertial Manifolds". Discrete and Continuous Dynamical Systems A, 34 Vol 10 pp. 3921-3944 (2014)
- J.M. Arrieta, G. Barbatis, "Stability estimates in H10 for solutions of elliptic equations in varying domains” Mathematical Methods in Applied Science, 37, 2, pp.180-186 (2014)
- J.M. Arrieta, M. Villanueva-Pesqueira "Locally periodic thin domains with varying period" C.R. Acad. Sci. Paris Ser I. 352 pp 397-403 (2014)
- J.M. Arrieta, M. Villanueva-Pesqueira, “Fast and slow boundary oscillations in a thin domain”. Advances in Differential Equations and Applications SEMA SIMAI Springer Series, Vol. 4, 2014, pp 13-22 (2014) ISBN 978-3-319-06952-4
- J.M. Arrieta, M. Villanueva-Pesqueira; “Thin domains with doubly oscillatory boundary”, Mathematical Methods in Applied Science, 37, 2 (2014), 158-166.
- J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, “Localization phenomena in a degenerate logistic equation” Electronic Journal of Differential Equations 21, pp 1-9 (2014)
- J.M. Arrieta, R. Pardo, A.Rodríguez–Bernal, “A degenerate parabolic logistic equation”, Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 3–10, (2014). ISBN 978-3-319-06952-4.
- J.W. Cholewa, A. Rodriguez-Bernal, “A note on the Cahn-Hilliard equation in H1(RN) involving critical exponent”, Math. Bohem. 139, pp. 269-283 (2014)
- J.W. Cholewa, A. Rodriguez-Bernal, “Critical and supercritical higher order parabolic problems in RN”, Nonlinear Analysis 104, pp. 50-74 (2014)
- U. Brauer and L.Karp. “Local existence of solutions of self gravitating relativistic perfect fluids” Comm. Math. Physics, 325:105–141, (2014).
- Chasseigne, Emmanuel ; Ferreira, Raúl . Isothermalisation for a non-local heat equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 4, 1115--1132.
Year 2015
- U. Brauer and L. Karp, Elliptic equations in weighted Besov spaces on asymptotically flat Riemannian manifolds, Manuscripta Math., 148(1-2), 59-97 (2015).
- J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, "Asymptotic behavior of degenerate logistic equations”, Journal of Differential Equations, 259, #11, pp.6368-6398 (2015)
- A. Castro, R. Pardo, “A priori bounds for positive solutions of subcritical elliptic equations”, Rev Mat Complut 28, pp: 715-731 (2015)
- S. Sastre, “Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves”, Nonlinear Analysis, v. 125, p. 725-731, (2015).
- G, Griso, M. Villanueva-Pesqueira. “Straight rod with different order of thickness”, Asymptotic Analysis, 94, 3-4 (2015), 255-291. ISSN: 0921-7134
- J. Yasappan, A. Jiménez-Casas, M. Castro “Stailizing interplay between thermosiffusion and viscoelasticity in a closed-loop thermosyphon” Discrete and Continuous Dynamical Systems B, Vol 20, N. 9 pp. 3267-3299 (2015)
- Ferreira, Raúl ; Rossi, Julio D. Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions. Discrete Contin. Dyn. Syst. 35 (2015), no. 4, 1469--1478.
Year 2016
- Ferreira, Raúl ; Pérez-Llanos, Mayte . Limit problems for a Fractional p-Laplacian as p→∞. NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, 23:14.
- A. Rodríguez-Bernal, S. Sastre, “Linear nonlocal diffusion problems in metric measure spaces”. Proceedings of the Royal Society of Edinburg 146, 833-863 (2016). JCR Math, Q1, 61/312, Appl. Math, Q2, 95/254.
- A. Rodriguez-Bernal and A. Vidal-Lopez, “Well poshness and and asymptotic behavior of supercritical reaction-diffusion equations with nonlinear boundary conditions”. Dynamics of Partial Differential Equations 13, 273–295 (2016). JCR Appl. Math, Q3, 161/254.
- J. Cholewa, A. Rodríıguez-Bernal, “Linear higher order parabolic problems in locally uniform Lebesgue’s spaces”. Journal of Mathematical Analysis and Applications, JCR Math, Q1, 56/312, Appl. Math, Q1, 88/254.
- A. Rodríguez-Bernal, “The heat equaton with general periodic boundary conditions”,Potential Analysis, JCR Math, Q1, 67/312.
- A.Jiménez–Casas, A. Rodríguez–Bernal, “Some general models of traffic flow in anisolated network”. Mathematical Methods in the Applied Sciences (22 páginas). JCR Appl. Math, Q2, 90/254.
Year 2017
- Ferreira, Raúl; Pérez-Llanos, Mayte A nonlocal operator breaking the Keller-Osserman condition. Adv. Nonlinear Stud. 17 (2017), no. 4, 715–725.
- Mavinga, Nsoki; Pardo, Rosa Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 649–671.
- Castro, Alfonso; Pardo, Rosa Infinitely many stability switches in a problem with sublinear oscillatory boundary conditions. J. Dynam. Differential Equations 29 (2017), no. 2, 485–499.
- Castro, Alfonso; Pardo, Rosa A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.
- Mavinga, N.; Pardo, R. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188
- Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains. Integral Equations Operator Theory 89 (2017), no. 3, 377–408.
- Arrieta, José M.; Santamaría, Esperanza Distance of attractors of reaction-diffusion equations in thin domains. J. Differential Equations 263 (2017), no. 9, 5459–5506.
- Arrieta, José M.; Lamberti, Pier Domenico Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differential Equations 263 (2017), no. 7, 4222–4266.
- Arrieta, José M.; Villanueva-Pesqueira, Manuel Thin domains with non-smooth periodic oscillatory boundaries. J. Math. Anal. Appl. 446 (2017), no. 1, 130–164.
- Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. J. Abstr. Differ. Equ. Appl. 8 (2017), no. 2, 1–69.
- Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal Some general models of traffic flow in an isolated network. Math. Methods Appl. Sci. 40 (2017), no. 11, 3982–4000.
- Rodríguez-Bernal, Aníbal The heat equation with general periodic boundary conditions. Potential Anal. 46 (2017), no. 2, 295–321.
- Quesada, Carlos; Rodríguez-Bernal, Aníbal Second order linear parabolic equations in uniform spaces in RN. Rev. Mat. Complut. 30 (2017), no. 1, 63–78.
- Cholewa, Jan W.; Rodriguez-Bernal, Anibal Linear higher order parabolic problems in locally uniform Lebesgue's spaces. J. Math. Anal. Appl. 449 (2017), no. 1, 1–45.
- Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2669–2680.
- Jiménez-Casas, Ángela Asymptotic Behaviour of the Nonlinear Dynamical System Governing a Thermosyphon Model. Chaotic Modeling and Simulation (CMSIM).
Year 2018
- Ferreira, R.; de Pablo, A. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions. Rev. Mat. Complut. 31 (2018), no. 3, 805–832.
- Ferreira, Raul Blow-up for a semilinear heat equation with moving nonlinear reaction. Electron. J. Differential Equations 2018, Paper No. 32, 11 pp.
- Damascelli, Lucio; Pardo, Rosa A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl. 41 (2018), 475–496
- Arrieta, José M.; Santamaría, Esperanza C1,θ-estimates on the distance of inertial manifolds. Collect. Math. 69 (2018), no. 3, 315–336. 35K90 (35B42)
- Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Boundary homogenization for a triharmonic intermediate problem. Math. Methods Appl. Sci. 41 (2018), no. 3, 979–985.
- Robinson, James C.; Rodríguez-Bernal, Aníbal Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Adv. Math. 334 (2018), 488–543.
- Jiménez-Casas, Ángela Metastable solutions for the thin-interface limit of a p-Laplacian phase field model. Math. Methods Appl. Sci. 41 (2018), no. 16, 6851–6865
- Jiménez-Casas, Ángela Asymptotic Behaviour of a Viscoelastic Thermosyphon Model.Chaotic Modeling and Simulation (CMSIM).
- Rodríguez Gomez, Alberto; Jiménez-Casas, Ángela Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform. American Journal of Engineering Research(AJER)
- Henry, David; Sastre-Gomez, Silvia Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity. Differential Integral Equations 31 (2018), no. 1-2, 1–26
- Brauer, Uwe; Karp, Lavi Local existence of solutions to the Euler-Poisson system, including densities without compact support. J. Differential Equations 264 (2018), no. 2, 755–785.
Year 2019
- Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
- Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
- Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
Accepted for publication
- Brauer, U.; Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler--Poisson system accepted for publication in Journal d'Analyse Mathematique (2019).
Books
- S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007
- R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).
- R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
|