December 26, 2024, Thursday, 360

Publications

De Cadedif

Contenido


Publications in peer reviewed journals

Publications before 2010

Year 2011

  1. J. M. Arrieta, M.C. Pereira, Homogenization in a thin domain with an oscillatory boundary, Journal de Mathématiques Pures et Apliquées 96, #1, pp: 29-57 (2011)
  2. J.M. Arrieta, M. López-Fernández, E. Zuazua, On a nonlocal moving frame approximation of traveling waves Comptes Rendus Mathematique 349 pp. 753-758 (2011)
  3. J.M. Arrieta, A.N. Carvalho, M.C. Pereira, R.P. da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory, Methods and Applications 74, #15 pp: 5111-5132 (2011)
  4. R. Ferreira, Quenching phenomena for a non-local diffusion equation with a singular absorption. Israel Journal of Mathematics, Israel J. Math. 184 pp. 387–402 (2011)
  5. C. Brändle, E. Chasseigne, R. Ferreira, Unbounded solutions of the nonlocal heat equation, Commun. Pure Appl. Anal. 10 no. 6, pp. 1663–1686, (2011)
  6. A. Rodríguez-Bernal, Perturbation of analytic semigroups in scales of banach spaces and applications to linear parabolic equations with low regularity data, SeMA Journal No. 53, pp. 3–54, (2011)
  7. A. Jiménez-Casas, A. Rodríguez-Bernal, Singular limit for a nonlinear parabolic equation with terms concentrating on the boundary, J. Math. Anal. Appl. 379, no. 2, pp. 567–588, (2011).
  8. Uwe Brauer, Lavi Karp, Well-posedness of the Einstein–Euler system in asymptotically flat pacetimes: The constraint equations, Journal of Diff. Equations 251, Issue 6, pp. 1428-1446 (2011)
  9. A. Jiménez-Casas, A. Rodríguez-Bernal, Dynamic boundary conditions as limit of singularity perturbed parabolic problems, Discrete and Continuous Dynamical System A, Supplement 2011. Dedicated to the 8th AIMS Conference.pp. 737-746, (2011).
  10. R. Pardo, H. Herrero and S. Hoyas, Theoretical study of a Bénard-Marangoni problem, Journal of Mathematical Analysis and Applications, Vol. 376, pp. 231-246 (2011)
  11. Juan J. Nieto, Rosana Rodríguez, Manuel Villanueva, Green’s Function for the Periodic Boundary Value Problem Related to a First-order Impulsive Differential Equation and Applications to Functional Problems, Differ. Equ. Dyn. Syst. 19, no. 3, 199–210 (2011)
  12. Juan J. Nieto, Rosana Rodríguez, Manuel Villanueva; Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optimization and Decision Making, Volume 10 Issue 4, (2011).


Year 2012

  1. R. Pardo, A.L. Pereira, J.C. Sabina de Lis, “The tangential variation of a localized flux-type eigenvalue problem”, Journal of Differential Equations, 252, Issue 3, pp. 2104–2130 (2012)
  2. A. Rodríguez-Bernal, A singular perturbation in a linear parabolic equation with terms concentrating on the boundary, Revista Matemática Complutense 25, nº.1, pp. 165–197 (2012).
  3. J. W. Cholewa, A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $R^N$, Nonlinear Analysis TMA 75, pp. 194-210 (2012).
  4. J.M. Arrieta, M. López-Fernández, E. Zuazua, “Approximating travelling waves by equilibria of non local equations”, Asymptotic Analysis 78 pp. 145-186 (2012)
  5. J.M. Arrieta, A.N. Carvalho, J.A. Langa, A. Rodríguez-Bernal, Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations, Journal of Dynamics and Differential Equations 24, #3 pp 427-481 (2012)
  6. J. W. Cholewa, A. Rodriguez-Bernal, ``Dissipative mechanism of a semilinear higher order parabolic equation in $\R^N$.   Nonlinear  Analysis TMA 75, 3510--3530 (2012).
  7. J. W. Cholewa, A. Rodriguez-Bernal, ``On the Cahn--Hilliard equation in $H^{1}(\R^{N})$.  Journal of  Differential Equations 253, 3678--3726 (2012). 
  8. A. Jiménez-Casas and A. Rodríguez-Bernal, ``Dynamic   boundary conditions as a singular limit of parabolic problems with  terms concentrating at the boundary.   Dynamics of Partial Differential Equations 9,   341--368 (2012). 
  9. R. Pardo, Bifurcation for an elliptic problem with nonlinear boundary conditions, Integración. Temas de matemáticas. Vol 30, Nº 2, 151-226 (2012)
  10. R. Pardo, A. Castro, “Resonant solutions and turning points in an elliptic problem with oscillatory boundary conditions”, Pacific Journal of Mathematics 257 pp. 75-90 (2012)
  11. R. Ferreira, A. de Pablo, M. Pérez-Llanos and J. D. Rossi , “Critical exponents for a parabolic semilinear equation with variable reaction”, Proc. Roy. Soc. Edinburgh Sect. A 142, no. 5, 1027–1042 (2012)
  12. R. Ferreira and M. Pérez-Llanos "Blow-up for the non-local p-Laplacian equation with a reaction term", Nonlinear Anal. 75, no. 14, 5499–5522 (2012)

Year 2013

  1. J. Arrieta "The Neumann problem in thin domains with very highly oscillatory boundaries" (doi: 10.1016/j.jmaa.2013.02.061) Journal of Mathematical Analysis and Applications 404, #1 pp 86-104 (2013) (with M.C. Pereira).
  2. J. Arrieta "Rate of convergence of global attractors of some perturbed reaction-diffusion problems" Topological Methods in Nonlinear Analysis 41 (2), pp. 229-253 (2013) (with F.D.M. Bezerra and A.N. Carvalho)
  3. J. Arrieta. "Spectral stability results for higher order operators under perturbations of the domain" (doi:10.1016/j.crma.2013.10.001) C. R. Acad.Sci.Paris, Ser.I 351(2013)725–730 (with Pier D. Lamberti)
  4. F. Cortez, A. Rodríguez-Bernal,``PDEs in moving time dependent domains, In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Springer Series: Understanding Complex Systems, 559-578 (2013).
  5. Chasseigne, Emmanuel; Sastre-Gómez, Silvia; A nonlocal two phase Stefan problem. Differential Integral Equations 26 (2013), no. 11-12, 1335–1360.
  6. Yasappan J., A. Jiménez Casas y Castro M. Título: Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis, and Numerical Experiments Abstract and Applied Analysis, vol 2013, p1-20
  7. J. Yasappan, A. Jiménez Casas, M. Castro “Chaotic behavior of the closed loop thermosyphon model with memory effects”, Chaotic Modeling and Simulation 2, pp 281-288 (2013)

Year 2014

  1. A. Rodriguez-Bernal and A. Vidal-López, “A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities”. Communications on Pure Applied Analysis 13, 635–644 (2014).
  2. A. Jiménez-Casas, A. Rodríguez-Bernal, “A model of traffic flow in a network”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 193–200, (2014). ISBN 978-3-319-06952-4
  3. A. Rodríguez-Bernal, S. Sastre, “Nonlinear nonlocal reaction–diffusion equations”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 53–61, (2014). ISBN 978-3-319-06952-4
  4. C. Quesada, A. Rodríguez-Bernal, “Perturbation of analytic semigroups in uniform spaces in RN”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 41–49, (2014). ISBN 978-3-319-06952-4
  5. C. Quesada, A. Rodríguez-Bernal, “Smoothing and perturbation for some fourth order linear parabolic equations in RN”, Journal of Mathematical Analysis and Applications, Volume 412, Issue 2, pp. 1105-1134 (2014)
  6. J.M. Arrieta, E. Santamaría, "Estimates on the Distance of Inertial Manifolds". Discrete and Continuous Dynamical Systems A, 34 Vol 10 pp. 3921-3944 (2014)
  7. J.M. Arrieta, G. Barbatis, "Stability estimates in H10 for solutions of elliptic equations in varying domains” Mathematical Methods in Applied Science, 37, 2, pp.180-186 (2014)
  8. J.M. Arrieta, M. Villanueva-Pesqueira "Locally periodic thin domains with varying period" C.R. Acad. Sci. Paris Ser I. 352 pp 397-403 (2014)
  9. J.M. Arrieta, M. Villanueva-Pesqueira, “Fast and slow boundary oscillations in a thin domain”. Advances in Differential Equations and Applications SEMA SIMAI Springer Series, Vol. 4, 2014, pp 13-22 (2014) ISBN 978-3-319-06952-4
  10. J.M. Arrieta, M. Villanueva-Pesqueira; “Thin domains with doubly oscillatory boundary”, Mathematical Methods in Applied Science, 37, 2 (2014), 158-166.
  11. J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, “Localization phenomena in a degenerate logistic equation” Electronic Journal of Differential Equations 21, pp 1-9 (2014)
  12. J.M. Arrieta, R. Pardo, A.Rodríguez–Bernal, “A degenerate parabolic logistic equation”, Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 3–10, (2014). ISBN 978-3-319-06952-4.
  13. J.W. Cholewa, A. Rodriguez-Bernal, “A note on the Cahn-Hilliard equation in H1(RN) involving critical exponent”, Math. Bohem. 139, pp. 269-283 (2014)
  14. J.W. Cholewa, A. Rodriguez-Bernal, “Critical and supercritical higher order parabolic problems in RN”, Nonlinear Analysis 104, pp. 50-74 (2014)
  15. U. Brauer and L.Karp. “Local existence of solutions of self gravitating relativistic perfect fluids” Comm. Math. Physics, 325:105–141, (2014).
  16. Chasseigne, Emmanuel ; Ferreira, Raúl . Isothermalisation for a non-local heat equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 4, 1115--1132.


Year 2015

  1. U. Brauer and L. Karp, Elliptic equations in weighted Besov spaces on asymptotically flat Riemannian manifolds, Manuscripta Math., 148(1-2), 59-97 (2015).
  2. J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, "Asymptotic behavior of degenerate logistic equations”, Journal of Differential Equations, 259, #11, pp.6368-6398 (2015)
  3. A. Castro, R. Pardo, “A priori bounds for positive solutions of subcritical elliptic equations”, Rev Mat Complut 28, pp: 715-731 (2015)
  4. S. Sastre, “Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves”, Nonlinear Analysis, v. 125, p. 725-731, (2015).
  5. G, Griso, M. Villanueva-Pesqueira. “Straight rod with different order of thickness”, Asymptotic Analysis, 94, 3-4 (2015), 255-291. ISSN: 0921-7134
  6. J. Yasappan, A. Jiménez-Casas, M. Castro “Stailizing interplay between thermosiffusion and viscoelasticity in a closed-loop thermosyphon” Discrete and Continuous Dynamical Systems B, Vol 20, N. 9 pp. 3267-3299 (2015)
  7. Ferreira, Raúl ; Rossi, Julio D. Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions. Discrete Contin. Dyn. Syst. 35 (2015), no. 4, 1469--1478.

Year 2016

  1. Ferreira, Raúl ; Pérez-Llanos, Mayte . Limit problems for a Fractional p-Laplacian as p→∞. NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, 23:14.
  2. A. Rodríguez-Bernal, S. Sastre, “Linear nonlocal diffusion problems in metric measure spaces”. Proceedings of the Royal Society of Edinburg 146, 833-863 (2016). JCR Math, Q1, 61/312, Appl. Math, Q2, 95/254.
  3. A. Rodriguez-Bernal and A. Vidal-Lopez, “Well poshness and and asymptotic behavior of supercritical reaction-diffusion equations with nonlinear boundary conditions”. Dynamics of Partial Differential Equations 13, 273–295 (2016). JCR Appl. Math, Q3, 161/254.
  4. J. Cholewa, A. Rodríıguez-Bernal, “Linear higher order parabolic problems in locally uniform Lebesgue’s spaces”. Journal of Mathematical Analysis and Applications, JCR Math, Q1, 56/312, Appl. Math, Q1, 88/254.
  5. A. Rodríguez-Bernal, “The heat equaton with general periodic boundary conditions”,Potential Analysis, JCR Math, Q1, 67/312.
  6. A.Jiménez–Casas, A. Rodríguez–Bernal, “Some general models of traffic flow in anisolated network”. Mathematical Methods in the Applied Sciences (22 páginas). JCR Appl. Math, Q2, 90/254.


Year 2017

  1. Ferreira, Raúl; Pérez-Llanos, Mayte A nonlocal operator breaking the Keller-Osserman condition. Adv. Nonlinear Stud. 17 (2017), no. 4, 715–725.
  2. Mavinga, Nsoki; Pardo, Rosa Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 649–671.
  3. Castro, Alfonso; Pardo, Rosa Infinitely many stability switches in a problem with sublinear oscillatory boundary conditions. J. Dynam. Differential Equations 29 (2017), no. 2, 485–499.
  4. Castro, Alfonso; Pardo, Rosa A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.
  5. Mavinga, N.; Pardo, R. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188
  6. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains. Integral Equations Operator Theory 89 (2017), no. 3, 377–408.
  7. Arrieta, José M.; Santamaría, Esperanza Distance of attractors of reaction-diffusion equations in thin domains. J. Differential Equations 263 (2017), no. 9, 5459–5506.
  8. Arrieta, José M.; Lamberti, Pier Domenico Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differential Equations 263 (2017), no. 7, 4222–4266.
  9. Arrieta, José M.; Villanueva-Pesqueira, Manuel Thin domains with non-smooth periodic oscillatory boundaries. J. Math. Anal. Appl. 446 (2017), no. 1, 130–164.
  10. Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. J. Abstr. Differ. Equ. Appl. 8 (2017), no. 2, 1–69.
  11. Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal Some general models of traffic flow in an isolated network. Math. Methods Appl. Sci. 40 (2017), no. 11, 3982–4000.
  12. Rodríguez-Bernal, Aníbal The heat equation with general periodic boundary conditions. Potential Anal. 46 (2017), no. 2, 295–321.
  13. Quesada, Carlos; Rodríguez-Bernal, Aníbal Second order linear parabolic equations in uniform spaces in RN. Rev. Mat. Complut. 30 (2017), no. 1, 63–78.
  14. Cholewa, Jan W.; Rodriguez-Bernal, Anibal Linear higher order parabolic problems in locally uniform Lebesgue's spaces. J. Math. Anal. Appl. 449 (2017), no. 1, 1–45.
  15. Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2669–2680.
  16. Jiménez-Casas, Ángela Asymptotic Behaviour of the Nonlinear Dynamical System Governing a Thermosyphon Model. Chaotic Modeling and Simulation (CMSIM).

Year 2018

  1. Ferreira, R.; de Pablo, A. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions. Rev. Mat. Complut. 31 (2018), no. 3, 805–832.
  2. Ferreira, Raul Blow-up for a semilinear heat equation with moving nonlinear reaction. Electron. J. Differential Equations 2018, Paper No. 32, 11 pp.
  3. Damascelli, Lucio; Pardo, Rosa A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl. 41 (2018), 475–496
  4. Arrieta, José M.; Santamaría, Esperanza C1,θ-estimates on the distance of inertial manifolds. Collect. Math. 69 (2018), no. 3, 315–336. 35K90 (35B42)
  5. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Boundary homogenization for a triharmonic intermediate problem. Math. Methods Appl. Sci. 41 (2018), no. 3, 979–985.
  6. Robinson, James C.; Rodríguez-Bernal, Aníbal Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Adv. Math. 334 (2018), 488–543.
  7. Jiménez-Casas, Ángela Metastable solutions for the thin-interface limit of a p-Laplacian phase field model. Math. Methods Appl. Sci. 41 (2018), no. 16, 6851–6865
  8. Jiménez-Casas, Ángela Asymptotic Behaviour of a Viscoelastic Thermosyphon Model.Chaotic Modeling and Simulation (CMSIM).
  9. Rodríguez Gomez, Alberto; Jiménez-Casas, Ángela Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform. American Journal of Engineering Research(AJER)
  10. Henry, David; Sastre-Gomez, Silvia Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity. Differential Integral Equations 31 (2018), no. 1-2, 1–26
  11. Brauer, Uwe; Karp, Lavi Local existence of solutions to the Euler-Poisson system, including densities without compact support. J. Differential Equations 264 (2018), no. 2, 755–785.

Year 2019

  1. Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
  2. Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.

Accepted for publication

  1. Brauer, U.; Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler--Poisson system accepted for publication in Journal d'Analyse Mathematique (2019).


Books

  1. S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007
  2. R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).
  3. R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta