January 13, 2025, Monday, 12

Publications

De Cadedif

(Diferencias entre revisiones)
(Año 2008: repair list)
(Change Ferr)
Línea 86: Línea 86:
#J.M. Arrieta, N. Moya, A. Rodríguez-Bernal: "On the finite dimension of attractors of parabolic problems in <math>R^N </math> with general potentials", Nonlinear Analysis, Theory Methods and Applications 68, Issue 5, pp. 1082-1099 (2008)
#J.M. Arrieta, N. Moya, A. Rodríguez-Bernal: "On the finite dimension of attractors of parabolic problems in <math>R^N </math> with general potentials", Nonlinear Analysis, Theory Methods and Applications 68, Issue 5, pp. 1082-1099 (2008)
#J. Arrieta, A. Jimenez-Casas, A. Rodriguez-Bernal "Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating in the boundary" Revista Matemática Iberoamericana, 24 nº 1, pp. 183- 211 (2008)
#J. Arrieta, A. Jimenez-Casas, A. Rodriguez-Bernal "Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating in the boundary" Revista Matemática Iberoamericana, 24 nº 1, pp. 183- 211 (2008)
 +
#Bogoya, Mauricio; Ferreira, Raul; Rossi, Julio D. Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models. Proc. Amer. Math. Soc. 135 (2007), no. 12, 3837--3846
 +
 +
 +
== Publicaciones aceptadas  ==
== Publicaciones aceptadas  ==
Línea 91: Línea 95:
# J.M. Arrieta, A. Rodríguez-Bernal, J. Rossi, "[http://www.mat.ucm.es/%7Ejarrieta/papers/trace-constant.pdf The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary]", ''Proceedings of the Royal Society of Edinburgh A'',<br/>  
# J.M. Arrieta, A. Rodríguez-Bernal, J. Rossi, "[http://www.mat.ucm.es/%7Ejarrieta/papers/trace-constant.pdf The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary]", ''Proceedings of the Royal Society of Edinburgh A'',<br/>  
# M. Bogoya, R. Ferreira, J.D. Rossi, “Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models” ''Proceedings of the American Mathematical Society''<br/>  
# M. Bogoya, R. Ferreira, J.D. Rossi, “Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models” ''Proceedings of the American Mathematical Society''<br/>  
-
# M. Bogoya,'' ''R. Ferreira y J. D. Rossi, “A nonlocal nonlinear diffusion equation with blowing up boundary conditions”,'' Journal of Mathematical Analysis and Applications''<br/>
 
# A. Rodríguez-Bernal, A. Vidal-López, “Semiestable extremal ground states for nonlinear evolution equations in unbounded domains”, ''Journal of Mathematical Analysis and Applications''<br/>  
# A. Rodríguez-Bernal, A. Vidal-López, “Semiestable extremal ground states for nonlinear evolution equations in unbounded domains”, ''Journal of Mathematical Analysis and Applications''<br/>  
# A'' ''Jiménez Casas, “Invariant regions and global existence for a phase field model”, ''Discrete and Cont. Dynam. Systems. ''<br/>  
# A'' ''Jiménez Casas, “Invariant regions and global existence for a phase field model”, ''Discrete and Cont. Dynam. Systems. ''<br/>  

Revisión de 07:20 1 abr 2008

Contenido

Publicaciones en revistas internacionales

Año 2002

  1. J. M. Arrieta, N. Consul, A. Rodríguez-Bernal “Pattern Formation from boundary reaction” Fields Inst. Commun., 31, pp. 13-18, Amer. Math. Soc., Providence, RI, (2002).
  2. X. Biao Lin, I. Bosch “Heteroclinic and periodic cycles in a perturbed convection model” Journal of Differential Equations 182 pp. 219-265 (2002)
  3. R. Ferreira, P. Groisman y J. D. Rossi, “Numerical Blow-up for a nonlinear problem with a nonlinear boundary condition” Math. Models and Methods in Applied Sciences, 12, 461--483, 2002
  4. R. Ferreira, V. A. Galaktionov y J. L. Vázquez, “Uniqueness of Asymptotic Profiles for and extinction Problem” Nonlinear Analysis T. M. A., 50, 495--507, 2002
  5. R. Ferreira, F. Quiros y J. D. Rossi “The balance between nonlinear inwards and outwards boundary-flux for nonlinear heat equations” Journal of Differential Equation, 184, 259--282, 2002
  6. A. Jiménez-Casas and A. Rodríguez-Bernal. Asymptotic behaviour for a phase field model in higher order Sobolev spaces. Rev. Mat. Complut., 15(1):213-248, 2002.
  7. A. Rodríguez-Bernal. Some qualitative dynamics of nonlinear boundary conditions. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12(11):2333-2342. Spatio-temporal comp lexity. (2002)
  8. A. Rodríguez-Bernal. Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data. J. Differential Equations, 181(1):165-196, 2002.
  9. R. Dager, E. Zuazua “Spectral boundary controllability of networks of strings”, C.R. Acad. Sci. Paris, Serie I, 334 (7), 545-550, (2002)

Año 2003

  1. J. Fernández Bonder, R. Ferreira y J. D. Rossi, “Uniform bounds for the best Sobolev trace constant” Advanced Nonlinear Studies, 3, 181--192, 2003
  2. R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “The blow-up profile for a fast diffusion equation with a nonlinear boundary condition” Rocky Mountain J. Math, 33, 123--146, 2003
  3. R. Ferreira y J. L. Vázquez “Study of self-similarity for the fast difusión equation”
  4. Advances in Differential Equations, 8, 1125--1152, 2003
  5. R. Ferreira, P. Groisman y J. D. Rossi , “An adaptive numerical scheme for a parabolic problem with blow-up” IMA Journal of Numerical Análisis, 23, 439--463, 2003
  6. M. Negreanu, E. Zuazua, “Uniform boundary controllabillity of a discrete 1-D wave equation” , System and Control Letters, 48, Issues 3-4 pp 261-279 (2003)
  7. M. Negreanu, E. Zuazua, “A 2-d grid algorithm for the 1-d wave equation” Proceedings of the Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation, Waves 2003, Physcis and Astronomy, pp. 213-217, Springer (2003)
  8. R. Rodríguez del Río, E. Zuazua, “Series de Fourier y fenómeno de Gibbs”, Cubo Matemática Eduacional, 5 pp. 185-224 (2003)

Año 2004

  1. J.M. Arrieta "El Cálculo y la Modelización Matemática", en R. Rodríguez, E. Zuazua, De la Aritmética al Análisis: Historia y Desarrollo reciente en Matemáticas, Aulas de Verano, Instituto Superior de Formación del Profesorado, Ministerio de Educación y Ciencia,pp 11-57 (2004)
  2. J. M. Arrieta, A.N. Carvalho "Spectral Convergence and Nonlinear Dynamics for Reaction-Diffusion Equations under Perturbations of the Domain" Journal of Diff. Equations 199, pp. 143-178 (2004)
  3. J. M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Asymptotic Behavior and Attractors for Reaction Diffusion Equations in Unbounded Domains" Nonlinear Analysis, 56, pp. 515-554 (2004)
  4. J. M. Arrieta, N. Consul, A. Rodríguez-Bernal, "Stable boundary layers in a diffusion problem with nonlinear reaction at the boundary" Z.. Angew. Math. Phys. 55, pp. 1-14 (2004)
  5. J. M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Linear parabolic equations in locally uniform spaces" Mathematical Models and Methods in Applied Sciences, 14, n. 2, 253-294 (2004)
  6. J. M. Arrieta, A. Rodríguez-Bernal and P. Souplet, "Boundedness of Global Solutions for Nonlinear Parabolic Equations involving Gradient Blow-up Phenomena" Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. Issue 1, Volume 3/2004, Series 5, pp 1-15, (2004)
  7. J. M. Arrieta, A. Rodríguez-Bernal "Localization on the boundary of blow-up for reaction-diffusion equations with nonlinear boundary conditions" Communications in Partial Differential Equations 29, 7&8, pp. 1127-1148 (2004)
  8. J.M. Arrieta, A. Rodríguez-Bernal "Non well posedness of parabolic equations with supercritical nonlinearities" Communications in Contemporary Mathematics 6, n 5, pp. 733-764 (2004)
  9. E. Chasseigne y R.Ferreira, “Monotone approximations of Green functions” Comptes Rendus Mathématique. Académie des Sciences. Paris, 339, 395--400, 2004
  10. R. Ferreira, P. Groisman y J. D. Rossi., “Numerical blow-up for the porous medium equation with a source” Numerical Methods for Partial Differential Eq, 20, 552--575, 2004
  11. R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “Superfast quenching” Journal Differential Equations, 199, 189--209, 2004
  12. M. Negreanu, E. Zuazua “Discrete Ingham inequalities and applications”, CRAS Paris, Serie I. Math 338 pp 281-286 (2004)
  13. L. Popescu and A. Rodríguez-Bernal. On a singularly perturbed wave equation with dynamic boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A, 134(2):389-413, 2004.
  14. R. Dager, “Networks of strings: modelization and control of vibrations”, e-STA, vol 1, (2004)
  15. R. Dager, “Observation and control of vibrations in tree-shaped networks of strings” SIAM Journal on Control and Optimization 43, 590-623, (2004)

Año 2005

  1. J.M. Arrieta, A. Rodríguez-Bernal. "Ill posed problems with supercritical nonlinearities. International Conference on Differential Equations (EQUADIFF'03) Hasselt, Belgium. World Scientific, pp 277 280, (2005) ,
  2. J.M. Arrieta, A. Jiménez-Casas, A. Rodríguez-Bernal "Nonhomogenous flux condition as limit of localized reactions. International Conference on Differential Equations (EQUADIFF'03) Hasselt, Belgium. World Scientific, pp 293-295, (2005),
  3. J.M. Arrieta, S. M. Bruschi "Problemas de valor de fronteira em domínios com oscilaçōes na fronteira", Seminario Brasileiro de Análise, Edición nº 62, Noviembre (2005),
  4. R. Ferreira, A. de Pablo, F. Quiros y J. L. Vázquez, “Blow-up. El problema matemático de explosión para ecuaciones y sistemas de reacción difusión” Boletín de la Soc. Española de Matemática Aplicada, 32, 75-111, 2005
  5. P. Quittner and A. Rodríguez-Bernal. Complete and energy blow-up in parabolic problems with nonlinear boundary conditions. Nonlinear Anal. TMA, 62(5):863-875, (2005).
  6. A. Rodríguez-Bernal and A. Vidal-López. Extremal equilibria and asymptotic behavior of parabolic nonlinear reaction-diffusion equations. In Nonlinear elliptic and parabolic problems: A Special Tribute to the Work of H. Amann., volume 64 of Progr. Nonlinear Differential Equations Appl., pages 509-516. Birkhäuser, Basel, (2005).
  7. A. Rodríguez-Bernal. Parabolic equations in locally uniform spaces. In Nonlinear elliptic and parabolic problems, volume 64 of Progr. Nonlinear Differential Equations Appl., pages 421-432. Birkhäuser, Basel, (2005).
  8. A. Rodríguez-Bernal and R. Willie. Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic problem. Discrete Contin. Dyn. Syst. Ser. B, 5(2):385-410, (2005).
  9. R. Ferreira, A. de Pablo y M. Pérez-Llanos, “Numerical blow-up for the p-laplacian equation with a source”, Computational Methods in Applied Mathematics 5, 137-154, (2005)
  10. R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “On the quenching set for a fast diffusion equation.Regional quenching”, Proceedings of the Royal Society of Edinburgh. Section A, 135, 585—601, (2005)
  11. A. Jiménez-Casas, “Metastable solutions for the thin-interface limit of a phase-field model” Nonlinear Analysis, Volume 63, Issues 5-7, 963-970, (2005)
  12. A. Jiménez-Casas, “Well posedness and asymptotic behavior of a closed loop thermosyphon”, World Scientific Publications pp: 59-74, (2005)

Año 2006

  1. R. Dager, E. Zuazua, “Wave propagation, observation and control of 1-D flexible multi-structures”, Mathematiques et Applications 50, Springer-Berlag Berlin (2006), x+221 pp. ISBN: 978-3-540-27239-9; 3-540-27239-9 [LIBRO DE INVESTIGACIÓN]
  2. I. Bosch, A. M. Minzoni, “Chaotic behavior in a singularly perturbed system” Nonlinearity 19, 1535-1551 (2006)
  3. M. Negreanu, E. Zuazua “Discrete Ingham inequalities and applications”, SIAM Journal of Numerical Analysis, Volume 44, Issue I (2006) pp 412-4448
  4. A. Rodríguez-Bernal and A. Vidal, “Asymptotic behavior of positive solutions of nonautonomous reaction-diffusion equations”, Bol. Soc. Esp. Mat. Apl. 34, 99-104 (2006)
  5. J. C. Robinson, A. Vidal–López, “Minimal periods of semilinear evolution equations with Lipschitz nonlinearity”. Jounal of Differential Equations, Vol. 220 (2), 396–406 (2006).
  6. J.M. Arrieta, S. M. Bruschi "Boundary Oscillations and Nonlinear Boundary Conditions", Comptes Rendus Mathematique, t. 343, Series I, pp. 99-104 (2006)
  7. J.M. Arrieta, A. Rodríguez-Bernal, J. Valero "Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity", International Journal of Bifurcation and Chaos 16, n. 10, pp. 2965-2984 (2006)
  8. J.M. Arrieta A.N. Carvalho and G. Lozada-Cruz "Dynamics in dumbbell domains I. Continuity of the set of equilibria" Journal of Differential Equations 231, Issue 2, pp. 551-597, (2006),
  9. R. Ferreira, A. de Pablo y J. L. Vázquez, “Classification of blow-up with nonlinear diffusion and localized reaction”, Journal Differential Equations 231, 195—211, (2006)
  10. R. Ferreira, A. de Pablo, G. Reyes y A. Sánchez, “The interfaces of an inhomogeneous porous médium equation with convection” Communications in Partial Differential Equations , 31, 497—514, (2006)
  11. R. Ferreira, A. de Pablo y J. D. Rossi, “Blow-up for a degenerate diffusion problem not in divergence form”, Indiana University Mathematics Journal , 55, 955—974, (2006)
  12. R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “Non-simultaneous quenching in a system of heat equations coupled at the boundary” Zeitschrift fur Angewandte Mathematik und Physik , 57, 586—594, (2006).
  13. R. Ferreira, A. de Pablo y J. L. Vázquez, “Classification of blow-up with nonlinear diffusion and localized reaction” Aparecerá en Journal Differential Equations 231, 195-211 (2006)
  14. R. Pardo, V. M. Pérez-García, “Dissipative solutions that cannot be trapped”, Phys. Rev. Lett. 97, (2006).
  15. R. Dager, A. Presa, “Duality of the space of germs of harmonic vector fields on a compact”, C.R. Acad. Sci. Paris, Serie I, 343 (1), 19-22, (2006)
  16. R. Dager, “Insensitizing controls for the 1-D wave equation”, SIAM Journal on Control and Optimization 45, 1758-1768, (2006)

Año 2007

  1. J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal "Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity", Proc. of the Royal Society of Edinburgh A, Vol.137, Issue 02, 225-252. (2007),
  2. A. Rodríguez-Bernal, R. Willie, “Nesting inertial manifolds of reaction-diffusion equations and large diffusivity. Nonlinear Analisis 67, 70-93 (2007)
  3. A. Rodríguez-Bernal, A. Vidal, “Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems”, Disc. Cont. Dyn. Systems 18, 537--567, (2007)
  4. J.A. Langa, J.C. Robinson, A.Rodríguez-Bernal, A. Suárez, A. Vidal, “Existence and non-existence of unbounded forward attractor for a class of nonautonomous reaction diffusion equations”. Disc. Cont. Dyn. Systems 18, 483—497, (2007)
  5. J.M. Arrieta, S.M. Bruschi “Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformation”, Mathematical Models and Methods in Applied Sciences 17, nº 10 (2007)
  6. R. Ferreira, A. de Pablo y J. D. Rossi, “Blow-up with logarithmic nonlinearities”, Journal Differential Equations 240, Issue 1, Pages 196-215 (2007)
  7. J.C. Robinson, A. Rodríguez-Bernal, A. Vidal-López, “Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems”, Journal of Differential Equations 238, 289-337 (2007)
  8. U. Brauer, L. Karp, “Local existence of classical solutions of the Einstein-Euler system using weighted Sobolev spaces of fractional order”, Comptes Rendus Mathematique 345, pp 49-54 (2007)
  9. J. A. Langa, J. C. Robinson, A. Suárez, A. Vidal-López, “The stability of attractors for non-autonomous perturbation of gradient-like systems”, Journal of Differential Equations 234, 605-627 (2007).
  10. J. M. Arrieta and A. Rodríguez-Bernal, “Blow up versus global boundedness of solutions of reaction diffusion equations with nonlinear boundary conditions”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 1-7
  11. J. M. Arrieta, A. Jimenéz-Casas and A. Rodríguez-Bernal, “Robin type conditions arising from concentrated potentials”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 157-164
  12. A. de Pablo, M. Pérez-Llanos and R. Ferreira, “Numerical blow-up for the p-Laplacian equation with a nonlinear source” Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 363-367
  13. J. M. Arrieta, N. Moya, A. Rodríguez-Bernal, “Dissipative dynamics of reaction diffusion equations in R^N” Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007), pp 405-414.
  14. A. Rodríguez-Bernal and A. Vidal-López, “Extremal equilibria for parabolic non-linear reaction-diffusion equations”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 531-539
  15. J.M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Dissipative parabolic equations in locally uniform spaces", Mathematische Nachrichten 280, Issue 15 (2007)

Año 2008

  1. J.M. Arrieta:" On boundedness of solutions of reaction-diffusion equations with nonlinear boundary conditions" Proceedings of the American Mathematical Society 136, Issue 1, pp. 151-160 (2008)
  2. J.M. Arrieta, N. Moya, A. Rodríguez-Bernal: "On the finite dimension of attractors of parabolic problems in RN with general potentials", Nonlinear Analysis, Theory Methods and Applications 68, Issue 5, pp. 1082-1099 (2008)
  3. J. Arrieta, A. Jimenez-Casas, A. Rodriguez-Bernal "Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating in the boundary" Revista Matemática Iberoamericana, 24 nº 1, pp. 183- 211 (2008)
  4. Bogoya, Mauricio; Ferreira, Raul; Rossi, Julio D. Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models. Proc. Amer. Math. Soc. 135 (2007), no. 12, 3837--3846



Publicaciones aceptadas

  1. J.M. Arrieta, A. Rodríguez-Bernal, J. Rossi, "The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary", Proceedings of the Royal Society of Edinburgh A,
  2. M. Bogoya, R. Ferreira, J.D. Rossi, “Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models” Proceedings of the American Mathematical Society
  3. A. Rodríguez-Bernal, A. Vidal-López, “Semiestable extremal ground states for nonlinear evolution equations in unbounded domains”, Journal of Mathematical Analysis and Applications
  4. A Jiménez Casas, “Invariant regions and global existence for a phase field model”, Discrete and Cont. Dynam. Systems.
  5. A.Jiménez Casas, M. Castro Ponce, “Slow motion for a phase field model” Mathematical Methods in the Applied Science.

Libros de investigación

  1. R. Dager, E. Zuazua, “Wave propagation, observation and control of 1-D flexible multi-structures”, Mathematiques et Applications 50, Springer-Berlag Berlin (2006), x+221 pp. ISBN: 978-3-540-27239-9; 3-540-27239-9

Libros docentes

  1. S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007
  2. R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).