December 26, 2024, Thursday, 360

Test2math

De Cadedif

(Diferencias entre revisiones)
(firt try)
(cases)
Línea 2: Línea 2:
where <math>E_j=E_j(x,t)\in \mathbb{C},\quad E_j(x,t)\to 0 \mbox{ as
where <math>E_j=E_j(x,t)\in \mathbb{C},\quad E_j(x,t)\to 0 \mbox{ as
}|x|\to \infty</math> for <math>j=1,2</math>, -->
}|x|\to \infty</math> for <math>j=1,2</math>, -->
 +
<math>
 +
  \begin{cases}
 +
    &\displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_1- \Delta E_1 = \mu_1
 +
    |E_1|^2E_1+\beta |E_2|^2E_1,\quad x\in
 +
    \mathbb{R}^n,\quad t>0\\
 +
    & \displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_2- \Delta E_2 = \mu_2
 +
    |E_2|^2E_2+\beta |E_1|^2E_2,\quad x\in \mathbb{R}^n,\quad t>0,
 +
  \end{cases}
 +
</math>
 +
 +
 +
the coupled parameter
the coupled parameter
<math>\beta\in \mathbb{R}</math>,
<math>\beta\in \mathbb{R}</math>,

Revisión de 14:11 24 abr 2016


  \begin{cases}
    &\displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_1- \Delta E_1 = \mu_1
    |E_1|^2E_1+\beta |E_2|^2E_1,\quad x\in
    \mathbb{R}^n,\quad t>0\\
    & \displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_2- \Delta E_2 = \mu_2
    |E_2|^2E_2+\beta |E_1|^2E_2,\quad x\in \mathbb{R}^n,\quad t>0,
  \end{cases}



the coupled parameter

\beta\in \mathbb{R},