SeminariosDe Cadedif(Diferencias entre revisiones)
Revisión de 13:41 7 mar 2008El grupo de investigación viene realizando "Seminarios de caracter informal" desde Octubre del 2006. Cada semana, un miembro del grupo de investigación o bien un investigador invitado externo al grupo expone algún tema de investigación de su interés. Las sesiones son dinámicas y participativas. Los objetivos de este seminario son:
miembros del grupo.
grupo.
miembros del grupo como con investigadores externos.
==Anibal Rodríguez: Una introducción al movimiento Browniano y a la integral estocástica (de Ito). 23-XI y 30-XI -2006 ==
Vamos a presentar de forma breve los conceptos y propiedades mas importantes que sirven de base para construir (y comprender) el modelo de Wiener del movimiento Browniano. Asimismo presentaremos una rapida introducción a la integral estocastica de Ito. Estos elementos són las claves fundamentales para, mas adelante, poder abordar las ecuaciones diferenciales estocasticas y (entre otros) sus relaciones cón los problemas de difusion. Material_adicional 12,30 a 13,30
En primer lugar haremos un muy breve repaso de la teoría de semigrupos y sistemas dinámicos autónomos. A continuación introduciremos una herramienta básica para el estudio de sistemas dinámicos no autónomos: los operadores de evolución; así como un nuevo concepto de atracción: la atracción en sentido pullback. Por último, introduciremos el concepto de "Skew-product flow" para el estudio de sistemas no autónomos y aleatorios. de 12,30 a 13,30
Trataremos de ver, medíante ejemplos sencillos, las técnicas básicas utilizadas en el estudio del comportamiento de la solución de un problema de reacción-difusión cerca del tiempo en el que se produce una singularidad.
Sorin Micu, Universitatea Craiova, Rumania Título: Problemas de controlabilidad unidimensionales Se consideran diferentes problemas de controlabilidad y se muestra la relación entre éstos y la teoría de momentos. Usando técnicas de funciones enteras y análisis de Fourier no armónico, se resuelven los correspondiente problemas de momentos. Tambien se estudíarán ecuaciones discretas y se describirán las principales dificultades que ellas introducen.
Se introducirán las ecuaciones diferenciales estocásticas a través de los dos modelos de integración estocásticas de ITO y de STRATONOVICH mostrando la relación entre ambas. De hecho el principal objetivo del seminario es intentar establecer las relaciones entre conceptos y procesos relacionados con las ecuaciones diferenciales, como son: Evolución-Probabilidad condicionada-Procesos de Markov (Procesos de Weinner). Ruido Blanco-Integral de Ito- ... entre otros.
==Mihaela Negreanu (UCM) Desigualdades discretas de Ingham 22-II y 27-II-2007 ==
La desigualdad de Ingham ha jugado un papel fundamental para la demostración de desigualdades de observabilidad en los modelos continuos que satisfacen la propiedad de separación spectral uniforme. Demostramos una version discreta de esta desigualdad, que permite, en particular, obtener resultados de observabilidad uniforme para las soluciones filtradas del sistema homogéneo completamente discreto en el caso Δt < Δx. La demostración sigue los pasos de la clásica de Ingham y utiliza un resultado de carácter técnico de Trefethen donde se estima la diferencia entre la transformada discreta y continua de Fourier.
==Rosa Pardo:Problemas de bifurcación en perturbación de dominios 13-III y 20-III-2007== El teorema de Crandall y Rabinowitz determina condiciones suficientes para que el conjunto de los ceros de una cierta aplicación en una bola, sea topológicamente equivalente (o difeomorfo), al conjunto Nosotros intentaremos desarrollar esas ideas en el marco de los problemas de perturbación de dominios.
==Uwe Brauer Problemas de valor inicial y de frontera libre para el sistema Euler--Poisson 27-III, 10-IV y 24-IV-2007 ==
Se trata el sistema Euler--Poisson, que describe la evolución temporal de un fluido perfecto con autogravitación. En la primera parte se da una introducción a las ecuaciones, esto incluye: el carácter de las ecuaciones, los diferentes problemas que se pueden plantear, como por ejemplo un problema de datos iniciales donde la densidad puede tener soporte compacto o no, un problema de frontera (libre), etc.; además las técnicas que se usan para obtener los resultados, en concreto para los sistemas simétricos hiperbólicos. Después se presenta un conjunto de resultados conocidos tanto locales (existencia local de soluciones clásicas), como globales (existencia global de soluciones clásicas para datos iniciales pequeños), además de resultados sobre blow up y no existencia global
En esta exposición hablaremos de la existencia de soluciones estacionarias estables no constantes para EDPs de tipo parabolico. Esto lo haremos para el caso de difusion alta en condiciones de frontera no lineales.
In this talk we introduce the formalism of Henry [Perturbation of the boundary in boundary value problems] for the computation of various quantities related to solutions of B.V.Ps with respecto to variations of the domain. We then use the formalism to compute the derivative of a (simple) eigenvalue of the Dirichlet Laplacian. Aula QB65 ==Sergio Hoyas Calvo, Departamento de Informática, Universidad de Valencia: Simulación numérica de altas prestaciones: 12-XII-07: 15:00--16:00== En esta charla haremos una visión general de las simulaciones numéricas de la forma más amplia posible, desde el hardware hasta la presentación final de resultados. Empezaremos por un repaso de las arquitecturas más usadas en este momento para el cálculo científico, deteniéndonos después en el software y herramientas más usadas por la comunidad, así como de los métodos usados para pasar del papel al código. Como aplicación de estas técnicas, veremos como se realizó una simulación de un canal turbulento en una malla de 1.8e10 puntos, que entre otras cosas, sirvió para el chequeo intensivo de MareNostrum, el mayor supercomputador europeo.Material_adicional
== Carlos Castro (UPM), "Implementación numérica de leyes de conservación escalares", 17-I-2008 de 12:30--13:30 == Resumen: En esta presentación daremos un repaso general de los métodos numéricos habituales para aproximar soluciones de leyes de conservación escalares. Analizaremos también su implementación práctica y veremos ejemplos en una y dos dimensiones.Material_adicional Mayte Pérez-Llanos, UC3M, "Tres Problemas con Blow-Up", 24-I-2008Resumen: Presentaremos diversos trabajos que tienen como nexo común el análisis del fenómeno de explosión en ciertos problemas de evolución de tipo parabólico. Comenzamos proponiendo un método numérico para tratar el problema de Dirichlet asociado a la ecuación del p−laplaciano con una fuente no lineal en un intervalo acotado. Demostramos que las aproximaciones numéricas obtenidas convergen a las soluciones del problema continuo, y que verifican un principio de comparación, además de otras propiedades. Con ellas reproducimos las condiciones de existencia de explosión, tasas y conjuntos de explosión y comportamiento asintótico conocidos para las soluciones del Problema continuo. A continuación estudiamos un problema asociado al operador doblemente no lineal con condición de contorno de tipo Neumann no lineal en un intervalo acotado. Demostramos existencia local de soluciones de dicho problema, y determinamos los conjuntos y tasas de explosión en función del valor de los exponentes que intervienen. Asimismo, para cierto valor de los mismos, demostramos la convergencia de las soluciones a un perfil estacionario. Finalizamos dando algunos ejemplos de problemas parabólicos en varias dimensiones espaciales, cuyas soluciones explotan en compactos no triviales, de dimensión arbitrariamente menor que la del espacio ambiente. Para ello deberemos estudiar el soporte de las soluciones de ciertos problemas elípticos. En colaboración con Raúl Ferreira (U. Complutense de Madrid), Ján Filo (U. Comenius, Eslovaquia), Arturo de Pablo (U. Carlos III de Madrid) y Julio D. Rossi (U. de Buenos Aires, Argentina) ==Francisco Montero, Departamento de Bioquímica y Biología Molecular I, UCM: "Matemáticas y problemas en bioquímica" 28-II-2008== Resumen: Mi intención es pasar revista a tres problemas: dinámica evolutiva y selectiva de sistemas auto-replicativos con error (fundamentalmente ecuaciones diferenciales ordinarias y modelos estocásticos). tiempos de respuesta en sistemas no lineales (deconvoluciones, transformadas de Fourier, etc..,) y análisis estequimétricos de redes metabólicas (álgebra de matrices, espacios vectoriales convexos, etc..). ==Ricardo P. Silva Universidade de São Paulo 6-III-2008 13:00-14:00: Parabolic Problems in thin Domains == Ricardo P. Silva, Departamento De Matemática, Instituto De Ciências Matemáticas e de Computação, Universidade de São Paulo-Campus De São Carlos, Caixa Postal 668, 13560- 970 São Carlos Sp, Brazil We study semilinear reaction-diffusion problems of the type
We develop a abstract theory to obtain the continuity of the asymptotic dynamics of (P) under singular perturbations of the spatial domain Ω and we apply that to many examples in thin domains. Aula QB62 ==Héctor Tejero, Departamento de Bioquímica y Biología Molecular I, UCM 13-III-2008 13:00-14:00 Dinámica de cuasiespecies teóricas: aproximación determinista == Resumen: 'El modelo de Eigen trata de explicar mediante el uso de ecuaciones diferenciales ordinarias la dinámica evolutiva de especies autorreplicantes sometidas a altas tasas de mutación. De este modelo resulta que en estas condiciones las poblaciones son distribuciones de mutantes denominadas cuasiespecies. Dicho modelo también predice un límite máximo para la tasa de mutación que puede soportar una población denominado umbral de error. Finalmente, se planteará en qué condiciones se puede producir la extinción de la población y cual es su relación con el umbral de error' (Atencion al aula QC11) |