December 26, 2024, Thursday, 360

Seminarios

De Cadedif

(Diferencias entre revisiones)
(Add Rossi)
(Replace Rosa-->Anibal)
 
(31 ediciones intermedias no se muestran.)
Línea 1: Línea 1:
-
El grupo de investigación viene realizando "Seminarios de caracter informal" desde Octubre del 2006.  Cada semana, un miembro del grupo de investigación o bien un investigador invitado externo al grupo expone algún tema de investigación de su interés. Las sesiones son dinámicas y participativas.
+
El grupo organiza dos tipos distintos de seminarios:
-
Los objetivos de este seminario son:
+
-
* familiarizarnos con los distintos temas de investigación de los miembros del grupo.
+
* [[Seminarios_CADEDIF| Seminarios CADEDIF ]]: seminarios participativos y de carácter informal en donde alguno de los miembros del grupo o algún invitado exponen un tema de investigación.  
-
* fomentar la interacción científica entre los distintos miembros del grupo.
+
-
* establecer posibles vias de cooperación científica tanto entre los miembros del grupo como con investigadores externos.
+
 +
* [[Conferencias del Departamento de Matematica Aplicada patrocinadas por el Grupo CADEDIF]]: como grupo de investigación, el grupo colabora activamente con el Seminario del Departamento y patrocina alguna de estas conferencias.
 +
La encargada de la coordinación de estos dos seminarios es
 +
[mailto:arober@ucm.es '''Anibal Rodriguez Bernal'''].
-
__TOC__
 
-
== Ignacio Bosch: Propiedades ergódicas de las edp's con condiciones iniciales nolineales 2-XI y 16-XI-2006==
 
-
 
+
{{#widget:Google Calendar
-
Primero expondre brevemente las tecnicas que se conocen para determinar la existencia de atractores y de medidas invariantes de estos atractores para EDP's cón una perturbación aleatoria (kick force o white noise). Existen ya muchos trabajos relacionados cón estas perturbaciones. En el caso de condiciones de contorno no lineales y basandonos en los trabajos de J. Arrieta y A. Rodriguez-Bernal se podria ver que condiciones deben cumplir las solucionespara que existan dichas medidas. Finalmente, se pueden deducir propiedades de ergodicidad, mezclante, decaimiento exponencial etc.
+
|id=ttjbv9vi06qifcnkvfvmr7ce3g@group.calendar.google.com
-
 
+
|color=B1440E
-
==Anibal Rodríguez: Una introducción al movimiento Browniano y a la integral estocástica (de Ito). 23-XI y 30-XI -2006 ==
+
|height=400
-
 
+
|width=80%
-
 
+
|title=Seminarios de Cadedif
-
 
+
}}
-
Vamos a presentar de forma breve los conceptos y propiedades mas importantes que sirven de base para construir (y comprender) el modelo de Wiener del movimiento Browniano. Asimismo presentaremos una rapida introducción a la integral estocastica de Ito.
+
-
 
+
-
Estos elementos són las claves fundamentales para, mas adelante, poder abordar las ecuaciones diferenciales estocasticas y (entre otros) sus relaciones cón los problemas de difusion.
+
-
[[Material_adicional]]
+
-
 
+
-
12,30 a 13,30
+
-
 
+
-
 
+
-
== Alejandro Vidal: Introducción a la teoría de sistemas dinámicos no autónomos. 14-XI-2006 y 18-01-2007 ==
+
-
 
+
-
En primer lugar haremos un muy breve repaso de la teoría de semigrupos
+
-
y sistemas dinámicos autónomos. A continuación introduciremos una
+
-
herramienta básica para el estudio de sistemas dinámicos no autónomos:
+
-
los operadores de evolución; así como un nuevo concepto de atracción:
+
-
la atracción en sentido pullback. Por último, introduciremos el
+
-
concepto de "Skew-product flow" para el estudio de sistemas no
+
-
autónomos y aleatorios.
+
-
 
+
-
de 12,30 a 13,30
+
-
 
+
-
 
+
-
==  Raul Ferreira: Formación de singularidades en problemas de reacción-difusión.  25-I y 1-II-2007 ==
+
-
 
+
-
Trataremos de ver, medíante ejemplos sencillos, las técnicas básicas utilizadas en el estudio del comportamiento de la solución de un problema de reacción-difusión cerca del tiempo en el que se produce una singularidad.
+
-
 
+
-
 
+
-
==Sorin Micu: Problemas de controlabilidad unidimensionales J: 08-II-2007 ==
+
-
 
+
-
Sorin Micu, Universitatea Craiova, Rumania
+
-
 
+
-
Título: Problemas de controlabilidad unidimensionales
+
-
 
+
-
Se consideran diferentes problemas de controlabilidad y se muestra la relación entre éstos y la teoría de momentos. Usando técnicas de funciones enteras y análisis de Fourier no armónico, se resuelven los correspondiente problemas de momentos. Tambien se estudíarán ecuaciones discretas y se describirán las principales dificultades que ellas introducen.
+
-
 
+
-
 
+
-
==Ángela Jiménez Casas:Introducción a las ecuaciones diferenciales estocásticas de ITO y de STRATONOVICH J: 15-II-2007==
+
-
 
+
-
 
+
-
 
+
-
Se introducirán las ecuaciones diferenciales estocásticas a través de los dos modelos de integración estocásticas de ITO y de STRATONOVICH mostrando la relación entre ambas.
+
-
 
+
-
De hecho el principal objetivo del seminario es intentar establecer las relaciones entre conceptos y procesos relacionados con las ecuaciones diferenciales, como son: Evolución-Probabilidad condicionada-Procesos de Markov (Procesos de Weinner). Ruido Blanco-Integral de Ito- ... entre otros.
+
-
 
+
-
 
+
-
 
+
-
==Mihaela Negreanu (UCM) Desigualdades discretas de Ingham 22-II y 27-II-2007 ==
+
-
 
+
-
 
+
-
 
+
-
La desigualdad de Ingham ha jugado un papel fundamental para la demostración de desigualdades de observabilidad en los modelos continuos que satisfacen la propiedad de separación spectral uniforme. Demostramos una version discreta de esta desigualdad, que permite, en particular, obtener resultados de observabilidad uniforme para las soluciones filtradas del sistema homogéneo completamente discreto en el caso <math> \Delta t<\Delta x </math>. La demostración sigue los pasos de la clásica de Ingham y utiliza un resultado de carácter técnico de Trefethen donde se estima la diferencia entre la transformada discreta y continua de Fourier.
+
-
 
+
-
 
+
-
 
+
-
==Rosa Pardo:Problemas de bifurcación en perturbación de dominios 13-III y 20-III-2007==
+
-
 
+
-
El teorema de Crandall y Rabinowitz determina condiciones suficientes para que el conjunto de los ceros de una cierta aplicación en una bola, sea topológicamente equivalente (o difeomorfo), al conjunto <math>(-1,1)\times \{0\} \cup \{0\}\times (-1,1). </math> Nosotros intentaremos desarrollar esas ideas en el marco de los problemas de perturbación de dominios.
+
-
 
+
-
[[Material_adicional]]
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
==Uwe Brauer Problemas de valor inicial y de frontera libre para el sistema Euler--Poisson 27-III, 10-IV y 24-IV-2007 ==
+
-
 
+
-
 
+
-
 
+
-
Se trata el sistema Euler--Poisson, que describe la evolución temporal de un fluido perfecto con autogravitación. En la primera parte se da una introducción a las ecuaciones, esto incluye: el carácter de las ecuaciones, los diferentes problemas que se pueden plantear, como por ejemplo un problema de datos iniciales donde la densidad puede tener soporte compacto o no, un problema de frontera (libre), etc.; además las técnicas que se usan para obtener los resultados, en concreto para los sistemas simétricos hiperbólicos. Después se presenta un conjunto de resultados conocidos tanto locales (existencia local de soluciones clásicas), como globales (existencia global de soluciones clásicas para datos iniciales pequeños), además de resultados sobre blow up y no existencia global
+
-
 
+
-
 
+
-
 
+
-
 
+
-
==José M. Arrieta: Dinámica Asintótica y Perturbaciones de Dominio: X 16-05-2007  ==
+
-
 
+
-
 
+
-
 
+
-
 
+
-
En esta exposición, se presentarán unos resultados sobre el comportamiento de la dinámica asintótica y en particular del atractor, de una ecuación cuando ciertas perturbaciones actúan sobre ésta. En primer lugar plantearemos el problema de una forma general. En segundo lugar, detallaremos los resultados para el caso de una ecuación de reacción difusión con condición de contorno Neumann homogénea y una perturbación general de dominio. Finalmente mencionaremos otros casos relevantes, entre ellos el comportamiento de los puntos de equilibrio de una ecuación de reacción difusión con condición de contorno no lineal, cuando la frontera es altamente oscilante.
+
-
 
+
-
 
+
-
==Germán Lozada: Soluciones estacionarias estables no constantes para EDPs de tipo parabólico con difusion alta en dominios tipo dumbbell: 25-X-07 y 8-XI-07 ==
+
-
 
+
-
En esta exposición hablaremos de la existencia de soluciones estacionarias estables no constantes para EDPs de tipo parabolico. Esto lo haremos para el caso de difusion alta en condiciones de frontera no lineales.
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
==Antônio Luiz Pereira, Instituto de Matemática e Estatística da USP, São Paulo, Brasil: A  derivation of Hadamard´s  formula: 4-XII-07 15,00 a 16,00==
+
-
 
+
-
In this talk we introduce the formalism of Henry [Perturbation of the boundary in boundary value problems] for the computation of various quantities related to solutions of B.V.Ps with respecto to variations of the domain. We then use the formalism to compute the derivative of a (simple) eigenvalue of the Dirichlet Laplacian.
+
-
 
+
-
'''Aula QB65 '''
+
-
 
+
-
==Sergio Hoyas Calvo, Departamento de Informática, Universidad de Valencia: Simulación numérica de altas prestaciones: 12-XII-07: 15:00--16:00==
+
-
 
+
-
En esta charla haremos una visión general de las simulaciones numéricas de la forma más amplia posible, desde el hardware hasta la presentación final de resultados. Empezaremos por un repaso de las arquitecturas más usadas en este momento para el cálculo científico, deteniéndonos después en el software y herramientas más usadas por la comunidad, así como de los métodos usados para pasar del papel al código. Como aplicación de estas técnicas, veremos como se realizó una simulación de un canal turbulento en una malla de 1.8e10 puntos, que entre otras cosas, sirvió para el chequeo intensivo de MareNostrum, el mayor supercomputador europeo.[[Material_adicional]]
+
-
 
+
-
 
+
-
==Jorge Alvarez Rodrigo: Existencia de soluciones para EDs Elípticas de doble no linealidad variable:  18 XII de 15,00 a 16,00 ==
+
-
 
+
-
 
+
-
Partiendo de los principales resultados de trabajos previos, se presenta una nueva ED Elíptica que combina los casos conocidos de exponentes variables. Se indican las confirmaciones experimentales más interesantes sobre el tema. La existencia de soluciones para las ecuaciones isotrópicas y anisotrópicas centra la demostración principal, y se apunta un esbozo de la unicidad. Se pretende presentar una extensión original a desarrollar de la teoría conocida sobre este tema.
+
-
 
+
-
== Carlos Castro (UPM):Implementación numérica de leyes de conservación escalares  Jueves día 17-I-2008 de 12:30--13:30 ==
+
-
 
+
-
Resumen: En esta presentación daremos un repaso general de los métodos numéricos habituales para aproximar soluciones de leyes de conservación escalares. Analizaremos también su implementación práctica y veremos ejemplos en una y dos dimensiones.[[Material_adicional]]
+
-
 
+
-
==Mayte Pérez-Llanos, UC3:Tres Problemas con Blow-Up Jueves  día  24-I-2008  de  12:30--13:30==
+
-
 
+
-
 
+
-
'''Resumen: ''' Presentaremos diversos trabajos que tienen como nexo común el análisis del fenómeno de explosión en ciertos problemas de evolución de tipo parabólico.
+
-
 
+
-
Comenzamos proponiendo un método numérico para tratar el problema de Dirichlet asociado a la ecuación del p−laplaciano con una fuente no lineal en un intervalo acotado. Demostramos que las aproximaciones numéricas obtenidas convergen a las soluciones del problema continuo, y que verifican un principio de comparación, además de otras propiedades. Con ellas reproducimos las condiciones de existencia de explosión, tasas y conjuntos de explosión y comportamiento asintótico conocidos para las soluciones del
+
-
Problema continuo.
+
-
 
+
-
A continuación estudiamos un problema asociado al operador doblemente no lineal con condición de contorno de tipo Neumann no lineal en un intervalo acotado. Demostramos existencia local de soluciones de dicho problema, y determinamos los conjuntos y tasas de explosión en función del valor de los exponentes que intervienen. Asimismo, para cierto valor de los mismos, demostramos la convergencia de las soluciones a un perfil estacionario.
+
-
 
+
-
Finalizamos dando algunos ejemplos de problemas parabólicos en varias dimensiones espaciales, cuyas soluciones explotan en compactos no triviales, de dimensión arbitrariamente menor que la del espacio ambiente. Para ello deberemos estudiar el soporte de las soluciones de ciertos problemas elípticos.
+
-
 
+
-
En colaboración con Raúl Ferreira (U. Complutense de Madrid), Ján Filo (U. Comenius, Eslovaquia), Arturo de Pablo (U. Carlos III de Madrid) y Julio D. Rossi (U. de Buenos Aires, Argentina)
+
-
 
+
-
==Julio Daniel Rossi, IMDEA: Título: Ecuaciones de evolución no locales;Jueves  día 31-I-2008 12:30--13:30 ==
+
-
 
+
-
 
+
-
'''Resumen ''':
+
-
Presentaremos una serie de resultados sobre ecuaciones no locales de la forma
+
-
<center>
+
-
<math>
+
-
u_t = J*u - u.
+
-
</math>
+
-
</center>
+

Última versión de 12:59 20 jun 2022

El grupo organiza dos tipos distintos de seminarios:

  • Seminarios CADEDIF : seminarios participativos y de carácter informal en donde alguno de los miembros del grupo o algún invitado exponen un tema de investigación.

La encargada de la coordinación de estos dos seminarios es Anibal Rodriguez Bernal.