December 25, 2024, Wednesday, 359

Publications

De Cadedif

(Diferencias entre revisiones)
(Year 2019: Add Raul)
(Add seminarios in order to generate a new page)
 
(23 ediciones intermedias no se muestran.)
Línea 1: Línea 1:
__TOC__
__TOC__
-
== Publications in peer reviewed journals  ==  
+
== Publications in peer reviewed journals  ==   
-
[[Publications before 2010]]
+
=== Publications before 2017===  
-
=== Year 2011 ===
+
[[Publications before 2017]] [[Seminarios]]
-
#J. M. Arrieta, M.C. Pereira, Homogenization in a thin domain with an oscillatory boundary, Journal de Mathématiques Pures et Apliquées 96, #1, pp: 29-57  (2011)
+
-
#J.M. Arrieta, M. López-Fernández, E. Zuazua, On a nonlocal moving frame approximation of traveling waves  Comptes Rendus Mathematique  349  pp. 753-758 (2011)
+
-
#J.M. Arrieta, A.N. Carvalho, M.C. Pereira, R.P. da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Analysis: Theory, Methods and Applications 74, #15 pp: 5111-5132  (2011)
+
-
#R. Ferreira, Quenching phenomena for a non-local diffusion equation with a singular absorption. Israel Journal of Mathematics,  Israel J. Math. 184 pp. 387–402 (2011)
+
-
#C. Brändle, E. Chasseigne, R. Ferreira, Unbounded solutions of the nonlocal heat equation,  Commun. Pure Appl. Anal. 10  no. 6,  pp. 1663–1686, (2011)
+
-
#A. Rodríguez-Bernal, Perturbation of analytic  semigroups in scales of banach spaces and applications to linear parabolic  equations with low regularity data, SeMA Journal No. 53, pp. 3–54, (2011)
+
-
#A. Jiménez-Casas, A. Rodríguez-Bernal, Singular limit for a nonlinear parabolic equation with terms concentrating on the boundary, J. Math. Anal. Appl. 379, no. 2, pp. 567–588, (2011).
+
-
#Uwe Brauer, Lavi Karp, Well-posedness of the Einstein–Euler system in asymptotically flat pacetimes: The constraint equations, Journal of Diff. Equations 251, Issue 6, pp. 1428-1446 (2011)
+
-
#A. Jiménez-Casas, A. Rodríguez-Bernal, Dynamic boundary conditions as limit of singularity perturbed parabolic problems, Discrete and Continuous Dynamical System A, Supplement 2011. Dedicated to the 8th AIMS Conference.pp. 737-746, (2011).
+
-
#R. Pardo, H. Herrero and S. Hoyas, Theoretical study of a Bénard-Marangoni problem, Journal of Mathematical Analysis and Applications, Vol. 376, pp. 231-246 (2011)
+
-
#Juan J. Nieto, Rosana Rodríguez, Manuel Villanueva,  Green’s Function for the Periodic Boundary Value Problem Related to a First-order Impulsive Differential Equation and Applications to Functional Problems,  Differ. Equ. Dyn. Syst. 19, no. 3, 199–210 (2011)
+
-
#Juan J. Nieto, Rosana Rodríguez, Manuel Villanueva; Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optimization and Decision Making, Volume 10 Issue 4,  (2011).
+
-
 
+
-
 
+
-
=== Year  2012 ===
+
-
# R. Pardo, A.L. Pereira, J.C. Sabina de Lis, “The tangential variation of a localized flux-type eigenvalue problem”, Journal of Differential Equations, 252, Issue 3, pp. 2104–2130 (2012)
+
-
# A. Rodríguez-Bernal, A singular perturbation in a linear parabolic equation with terms concentrating on the boundary, Revista Matemática Complutense 25, nº.1, pp. 165–197 (2012).
+
-
# J. W. Cholewa, A. Rodriguez-Bernal, Linear and semilinear higher order parabolic equations in $R^N$, Nonlinear Analysis TMA 75, pp. 194-210 (2012).
+
-
# J.M. Arrieta, M. López-Fernández, E. Zuazua, “Approximating travelling waves by equilibria of non local equations”, Asymptotic Analysis 78 pp. 145-186 (2012)
+
-
# J.M. Arrieta, A.N. Carvalho, J.A. Langa, A. Rodríguez-Bernal, Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations, Journal of Dynamics and Differential Equations 24, #3 pp 427-481 (2012)
+
-
# J. W. Cholewa, A. Rodriguez-Bernal, ``Dissipative mechanism of a semilinear higher order parabolic equation in $\R^N$''.   Nonlinear  Analysis TMA 75, 3510--3530 (2012).
+
-
# J. W. Cholewa, A. Rodriguez-Bernal, ``On the Cahn--Hilliard equation in $H^{1}(\R^{N})$''.  Journal of  Differential Equations 253, 3678--3726 (2012). 
+
-
# A. Jiménez-Casas and A. Rodríguez-Bernal, ``Dynamic   boundary conditions as a singular limit of parabolic problems with  terms concentrating at the boundary''.   Dynamics of Partial Differential Equations 9,   341--368 (2012). 
+
-
# R. Pardo, Bifurcation for an elliptic problem with nonlinear boundary conditions, Integración. Temas de matemáticas. Vol 30, Nº 2, 151-226 (2012)
+
-
# R. Pardo, A. Castro, “Resonant solutions and turning points in an elliptic problem with oscillatory boundary conditions”, Pacific Journal of Mathematics 257 pp. 75-90 (2012)
+
-
# R. Ferreira,  A. de Pablo, M. Pérez-Llanos and J. D. Rossi , “Critical exponents for a parabolic semilinear equation with variable reaction”,  Proc. Roy. Soc. Edinburgh Sect. A 142, no. 5, 1027–1042 (2012)
+
-
# R. Ferreira and M. Pérez-Llanos "Blow-up for the non-local p-Laplacian equation with a reaction term", Nonlinear Anal. 75, no. 14, 5499–5522 (2012)
+
-
 
+
-
=== Year 2013 ===
+
-
# J. Arrieta "The Neumann problem in thin domains with very highly oscillatory    boundaries" (doi: 10.1016/j.jmaa.2013.02.061) Journal of Mathematical Analysis and Applications 404, #1 pp  86-104  (2013) (with M.C. Pereira).
+
-
# J. Arrieta "Rate of convergence of global attractors of some perturbed reaction-diffusion problems" Topological Methods in Nonlinear Analysis 41 (2), pp. 229-253 (2013) (with F.D.M. Bezerra and A.N. Carvalho)
+
-
# J. Arrieta. "Spectral stability results for higher order operators under perturbations of the domain" (doi:10.1016/j.crma.2013.10.001) C. R. Acad.Sci.Paris, Ser.I 351(2013)725–730 (with Pier D. Lamberti)
+
-
# F. Cortez, A. Rodríguez-Bernal,``PDEs in moving time dependent domains'', In  Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Springer Series: Understanding Complex Systems, 559-578 (2013).
+
-
#Chasseigne, Emmanuel; Sastre-Gómez, Silvia; A nonlocal two phase Stefan problem. Differential Integral Equations 26 (2013), no. 11-12, 1335–1360.
+
-
# Yasappan J., A. Jiménez Casas y Castro M.  Título: Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis, and Numerical Experiments Abstract and Applied Analysis, vol 2013, p1-20
+
-
# J. Yasappan, A. Jiménez Casas, M. Castro “Chaotic behavior of the closed loop thermosyphon model with memory effects”, Chaotic Modeling and Simulation 2, pp 281-288 (2013)
+
-
 
+
-
=== Year 2014 ===
+
-
#  A. Rodriguez-Bernal and A. Vidal-López, “A note on  the existence of global solutions for reaction-diffusion equations  with almost-monotonic nonlinearities”. Communications on Pure  Applied Analysis 13, 635–644 (2014). 
+
-
# A. Jiménez-Casas, A. Rodríguez-Bernal,  “A model of traffic flow in a network”. Advances in Differential  Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp.  193–200, (2014). ISBN 978-3-319-06952-4
+
-
# A. Rodríguez-Bernal, S. Sastre,  “Nonlinear nonlocal reaction–diffusion equations”. Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series,  Vol. 4, pp. 53–61, (2014). ISBN 978-3-319-06952-4
+
-
# C. Quesada, A. Rodríguez-Bernal, “Perturbation of analytic semigroups in uniform spaces in R<sup>N</sup>”. Advances in Differential Equations and Applications,  SEMA/SIMAI Springer Series, Vol. 4, pp. 41&#x2013;49, (2014). ISBN  978-3-319-06952-4
+
-
# C. Quesada, A. Rodríguez-Bernal, “Smoothing and perturbation for some fourth order linear parabolic equations in R<sup>N</sup>”, Journal of Mathematical Analysis and Applications, Volume 412, Issue 2, pp. 1105-1134 (2014)
+
-
# J.M. Arrieta, E. Santamaría, "Estimates on the Distance of Inertial Manifolds". Discrete and Continuous Dynamical Systems A, 34 Vol 10 pp. 3921-3944 (2014)
+
-
# J.M. Arrieta, G. Barbatis, "Stability estimates in H<sup>1</sup><sub>0</sub> for solutions of elliptic equations in varying domains” Mathematical Methods in Applied Science, 37,  2,  pp.180-186 (2014)
+
-
# J.M. Arrieta, M. Villanueva-Pesqueira "Locally periodic thin domains with varying period" C.R. Acad. Sci. Paris  Ser I. 352 pp 397-403 (2014)
+
-
# J.M. Arrieta, M. Villanueva-Pesqueira, “Fast and slow boundary oscillations in a thin domain”. Advances in Differential Equations and Applications SEMA SIMAI Springer Series, Vol. 4, 2014, pp 13-22 (2014) ISBN  978-3-319-06952-4
+
-
# J.M. Arrieta, M. Villanueva-Pesqueira; “Thin domains with doubly oscillatory boundary”, Mathematical Methods in Applied Science, 37, 2 (2014), 158-166.
+
-
# J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, “Localization phenomena in a degenerate logistic equation” Electronic Journal of Differential Equations 21, pp 1-9 (2014)
+
-
# J.M. Arrieta, R. Pardo, A.Rodríguez–Bernal, “A degenerate parabolic logistic equation”, Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, Vol. 4, pp. 3–10, (2014).  ISBN 978-3-319-06952-4.
+
-
# J.W. Cholewa, A. Rodriguez-Bernal, “A note on the Cahn-Hilliard equation in H1(RN) involving critical exponent”, Math. Bohem. 139, pp. 269-283  (2014)
+
-
# J.W. Cholewa, A. Rodriguez-Bernal, “Critical and supercritical higher order parabolic problems in R<sup>N</sup>”, Nonlinear Analysis 104, pp. 50-74  (2014)
+
-
# U. Brauer and L.Karp.  “Local existence of solutions of self gravitating relativistic perfect fluids”  Comm. Math. Physics, 325:105&#x2013;141, (2014).
+
-
# Chasseigne, Emmanuel ;  Ferreira, Raúl . Isothermalisation for a non-local heat equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)  13  (2014),  no. 4, 1115--1132.
+
-
 
+
-
 
+
-
=== Year 2015 ===
+
-
# U. Brauer and L.  Karp, Elliptic equations in weighted Besov spaces on asymptotically flat Riemannian manifolds, Manuscripta Math., 148(1-2), 59-97 (2015).
+
-
#  J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal, "Asymptotic behavior of degenerate logistic equations”, Journal of Differential Equations, 259, #11, pp.6368-6398 (2015)
+
-
#  A. Castro, R. Pardo, “A priori bounds for positive solutions of subcritical elliptic equations”, Rev Mat Complut 28, pp: 715-731 (2015)
+
-
#  S. Sastre, “Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves”, Nonlinear Analysis, v. 125, p. 725-731, (2015).
+
-
#  G, Griso, M. Villanueva-Pesqueira. “Straight rod with different order of thickness”, Asymptotic Analysis, 94, 3-4 (2015), 255-291. ISSN: 0921-7134
+
-
#  J. Yasappan, A. Jiménez-Casas, M. Castro “Stailizing interplay between thermosiffusion and viscoelasticity in a closed-loop thermosyphon” Discrete and Continuous Dynamical Systems B, Vol 20, N. 9 pp. 3267-3299 (2015)
+
-
#  Ferreira, Raúl ;  Rossi, Julio D.  Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions. Discrete Contin. Dyn. Syst.  35  (2015),  no. 4, 1469--1478.
+
-
 
+
-
=== Year 2016 ===
+
-
# Ferreira, Raúl ;  Pérez-Llanos, Mayte . Limit problems for a Fractional p-Laplacian as p→∞. NoDEA Nonlinear Differential Equations Appl.  23  (2016),  no. 2, 23:14.
+
-
# A. Rodríguez-Bernal, S. Sastre, “Linear nonlocal diffusion problems in metric measure spaces”. Proceedings of the Royal Society of Edinburg 146, 833-863 (2016). JCR Math, Q1, 61/312, Appl. Math, Q2, 95/254.
+
-
# A. Rodriguez-Bernal and A. Vidal-Lopez, “Well poshness and and asymptotic behavior of supercritical reaction-diffusion equations with nonlinear boundary conditions”. Dynamics of Partial Differential Equations 13, 273–295 (2016). JCR Appl. Math, Q3, 161/254.
+
-
# J. Cholewa, A. Rodríıguez-Bernal, “Linear higher order parabolic problems in locally uniform Lebesgue’s spaces”. Journal of Mathematical Analysis and Applications, JCR Math, Q1, 56/312, Appl. Math, Q1, 88/254.
+
-
# A. Rodríguez-Bernal, “The heat equaton with general periodic  boundary conditions”,Potential Analysis, JCR Math, Q1, 67/312.
+
-
# A.Jiménez–Casas, A. Rodríguez–Bernal, “Some general models of traffic flow in anisolated network”. Mathematical Methods in the Applied Sciences (22 páginas). JCR Appl. Math, Q2, 90/254.
+
-
 
+
===  Year 2017===
===  Year 2017===
Línea 110: Línea 37:
=== Year 2019 ===
=== Year 2019 ===
-
# Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
+
# Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
 +
# Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary", Discrete and Continuous Dynamical Systems 24 (8) pp: 4217-4246,  (2019)
# Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
# Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
# Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
# Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
 +
#  Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro. 'Interaction of localized large diffusion and boundary conditions', Journal of Differential Equations, Volume 267, Issue 5, p. 2687-2736 (2019).
 +
 +
=== Year 2020 ===
 +
# Robinson, J. C., & Rodríguez-Bernal, A., ''The heat flow in an optimal Fréchet space of unbounded initial data in \(\Bbb R^d\)'', J. Differential Equations, '''269(11)''', 10277–10321 (2020).  http://dx.doi.org/10.1016/j.jde.2020.07.017
 +
# Pardo, R., & Sanjuán, A., ''Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth'', Electron. J. Differential Equations, '''()''', 114–17 (2020).
 +
# López-García, D., & Pardo, R., ''A mathematical model for the use of energy resources: a singular parabolic equation'', Math. Model. Anal., '''25(1)''', 88–109 (2020).  http://dx.doi.org/10.3846/mma.2020.9792
 +
# Jiménez-Casas, Á., & Rodríguez-Bernal, A., ''PDE problems with concentrating terms near the boundary'', Commun. Pure Appl. Anal., '''19(4)''', 2147–2195 (2020).  http://dx.doi.org/10.3934/cpaa.2020095
 +
# Ferreira, R., & de Pablo, A., ''Grow-up for a quasilinear heat equation with a localized reaction'', J. Differential Equations, '''268(10)''', 6211–6229 (2020).  http://dx.doi.org/10.1016/j.jde.2019.11.033
 +
# Castro, A., Cossio, J., Herrón, S., Pardo, R., & Vélez, C., ''Infinitely many radial solutions for a sub-super critical $p$-Laplacian problem'', Ann. Mat. Pura Appl. (4), '''199(2)''', 737–766 (2020).  http://dx.doi.org/10.1007/s10231-019-00898-x
 +
# Brauer, U., & Karp, L., ''Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler-Poisson system'', J. Anal. Math., '''141(1)''', 113–163 (2020).  http://dx.doi.org/10.1007/s11854-020-0125-4
 +
# Arrieta, J. M., & Villanueva-Pesqueira, M., ''Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary'', Commun. Pure Appl. Anal., '''19(4)''', 1891–1914 (2020).  http://dx.doi.org/10.3934/cpaa.2020083
 +
 +
=== Year 2021 ===
 +
# Pereira, M. C., & Sastre-Gomez, S., ''Nonlocal and nonlinear evolution equations in perforated domains'', J. Math. Anal. Appl., '''495(2)''', 124729–21 (2021).  http://dx.doi.org/10.1016/j.jmaa.2020.124729
 +
# Mavinga, N., & Pardo, R., ''Equivalence between uniform \(L^p^*\) a priori bounds and uniform \(L^\infty\) a priori bounds for subcritical $p$-Laplacian equations'', Mediterr. J. Math., '''18(1)''', 13–24 (2021).  http://dx.doi.org/10.1007/s00009-020-01673-6
 +
# Ferreira, R., & de Pablo, A., ''Blow-up rates for a fractional heat equation'', Proc. Amer. Math. Soc., '''149(5)''', 2011–2018 (2021).  http://dx.doi.org/10.1090/proc/15165
 +
# Clapp, M., Pardo, R., Pistoia, A., & Saldaña, A., ''A solution to a slightly subcritical elliptic problem with non-power nonlinearity'', J. Differential Equations, '''275()''', 418–446 (2021).  http://dx.doi.org/10.1016/j.jde.2020.11.030
 +
# Cardone, G., Perugia, C., & Villanueva Pesqueira, M., ''Asymptotic behavior of a Bingham flow in thin domains with rough boundary'', Integral Equations Operator Theory, '''93(3)''', 24–26 (2021).  http://dx.doi.org/10.1007/s00020-021-02643-7
 +
# Brauer, U., & Karp, L., ''The non-isentropic relativistic Euler system written in a symmetric hyperbolic form'', In  (Eds.), Anomalies in partial differential equations (pp. 63–76) (2021). : Springer, Cham.
 +
# Bezerra, F. D. M., Sastre-Gomez, S., & da Silva, S. H., ''Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition'', Appl. Anal., '''100(9)''', 1889–1904 (2021).  http://dx.doi.org/10.1080/00036811.2019.1671973
 +
# Arrieta J.M., J.C. Nakasato, M.C. Pereira, "The p-Laplacian equation in thin domains: The unfolding approach",  Journal of Differential Equations 274  (2021) pp: 1-34
 +
# Chhetri, N., Mavinga, M., & Pardo, R., ''Bifurcation from infinity with oscillatory nonlinearity for Neumann problem'', Electron. J. Differential Equations, '''Specialissue(1)''', 279–292 (2021).
 +
 +
=== Year 2022 ===
 +
# Rodríguez-Bernal, A., & Sastre-Gómez, S., ''Nonlinear nonlocal reaction-diffusion problem with local reaction'', Discrete Contin. Dyn. Syst., '''42(4)''', 1731–1765 (2022).  http://dx.doi.org/10.3934/dcds.2021170
 +
# Rodríguez-Bernal, A., ''Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces'', Nonlinear Anal., '''221()''', 112887–34 (2022).  http://dx.doi.org/10.1016/j.na.2022.112887
 +
# Ferreira, R., & de Pablo, A., ''A nonlinear diffusion equation with reaction localized in the half-line'', Math. Eng., '''4(3)''', 024–24 (2022).  http://dx.doi.org/10.3934/mine.2022024
 +
# Cholewa, J. W., & Rodriguez-Bernal, A., ''Sharp estimates for homogeneous semigroups in homogeneous spaces. Applications to PDEs and fractional diffusion in \(\Bbb R^N\)'', Commun. Contemp. Math., '''24(1)''', 2050070–56 (2022).  http://dx.doi.org/10.1142/S0219199720500704
 +
# Cholewa, J. W., & Rodriguez-Bernal, A., ''On some PDEs involving homogeneous operators. Spectral analysis, semigroups and Hardy inequalities'', J. Differential Equations, '''315()''', 1–56 (2022).  http://dx.doi.org/10.1016/j.jde.2022.01.029
 +
# Bandyopadhyay, S., Chhetri, M., Delgado, B. B., Mavinga, N., & Pardo, R., ''Maximal and minimal weak solutions for elliptic problems with nonlinearity on the boundary'', Electron. Res. Arch., '''30(6)''', 2121–2137 (2022).  http://dx.doi.org/10.3934/era.2022107
== Accepted for publication  ==
== Accepted for publication  ==
-
# Brauer, U.; Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler--Poisson system accepted for publication in Journal d'Analyse Mathematique (2019).
+
# Brauer, U., & Karp, L., ''Global existence of a nonlinear wave equation arising from Nordström's theory of gravitation'' accepted for publication in Journal of Evolution equations, (preprint in the arXiv) https://arxiv.org/abs/1912.03643 (2019).
 +
 
 +
== Submitted for publication ==
 +
# J.M. Arrieta, A.N. Carvalho, E. Moreira, J. Valero, "Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem", Submitted
<!-- == Libros de investigación  ==  
<!-- == Libros de investigación  ==  
Línea 124: Línea 85:
# R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).<br/>
# R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).<br/>
# R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
# R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
 +
# Rodríguez del Río. Una nueva visión de la geometría, Felix Klein. Colección Genios de las Matemáticas, RBA, Barcelona, 2017. (ISBN:978-84-473-9067-0). Translated into French (ISBN: 978-84-473-9611-5) and into Italian (ISSN: 2531-890X)
 +
#Arrieta Algarra J.M., Ferreira de Pablo R, Pardo San Gil R, Rodríguez Bernal A, "Análisis Numérico de Ecuaciones Diferenciales".  Paraninfo (2020) (ISBN: 9788428344418)

Última versión de 12:25 20 jun 2022

Contenido


Publications in peer reviewed journals

Publications before 2017

Publications before 2017 Seminarios

Year 2017

  1. Ferreira, Raúl; Pérez-Llanos, Mayte A nonlocal operator breaking the Keller-Osserman condition. Adv. Nonlinear Stud. 17 (2017), no. 4, 715–725.
  2. Mavinga, Nsoki; Pardo, Rosa Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 649–671.
  3. Castro, Alfonso; Pardo, Rosa Infinitely many stability switches in a problem with sublinear oscillatory boundary conditions. J. Dynam. Differential Equations 29 (2017), no. 2, 485–499.
  4. Castro, Alfonso; Pardo, Rosa A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.
  5. Mavinga, N.; Pardo, R. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188
  6. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains. Integral Equations Operator Theory 89 (2017), no. 3, 377–408.
  7. Arrieta, José M.; Santamaría, Esperanza Distance of attractors of reaction-diffusion equations in thin domains. J. Differential Equations 263 (2017), no. 9, 5459–5506.
  8. Arrieta, José M.; Lamberti, Pier Domenico Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differential Equations 263 (2017), no. 7, 4222–4266.
  9. Arrieta, José M.; Villanueva-Pesqueira, Manuel Thin domains with non-smooth periodic oscillatory boundaries. J. Math. Anal. Appl. 446 (2017), no. 1, 130–164.
  10. Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. J. Abstr. Differ. Equ. Appl. 8 (2017), no. 2, 1–69.
  11. Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal Some general models of traffic flow in an isolated network. Math. Methods Appl. Sci. 40 (2017), no. 11, 3982–4000.
  12. Rodríguez-Bernal, Aníbal The heat equation with general periodic boundary conditions. Potential Anal. 46 (2017), no. 2, 295–321.
  13. Quesada, Carlos; Rodríguez-Bernal, Aníbal Second order linear parabolic equations in uniform spaces in RN. Rev. Mat. Complut. 30 (2017), no. 1, 63–78.
  14. Cholewa, Jan W.; Rodriguez-Bernal, Anibal Linear higher order parabolic problems in locally uniform Lebesgue's spaces. J. Math. Anal. Appl. 449 (2017), no. 1, 1–45.
  15. Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2669–2680.
  16. Jiménez-Casas, Ángela Asymptotic Behaviour of the Nonlinear Dynamical System Governing a Thermosyphon Model. Chaotic Modeling and Simulation (CMSIM).

Year 2018

  1. Ferreira, R.; de Pablo, A. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions. Rev. Mat. Complut. 31 (2018), no. 3, 805–832.
  2. Ferreira, Raul Blow-up for a semilinear heat equation with moving nonlinear reaction. Electron. J. Differential Equations 2018, Paper No. 32, 11 pp.
  3. Damascelli, Lucio; Pardo, Rosa A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl. 41 (2018), 475–496
  4. Arrieta, José M.; Santamaría, Esperanza C1,θ-estimates on the distance of inertial manifolds. Collect. Math. 69 (2018), no. 3, 315–336. 35K90 (35B42)
  5. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Boundary homogenization for a triharmonic intermediate problem. Math. Methods Appl. Sci. 41 (2018), no. 3, 979–985.
  6. Robinson, James C.; Rodríguez-Bernal, Aníbal Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Adv. Math. 334 (2018), 488–543.
  7. Jiménez-Casas, Ángela Metastable solutions for the thin-interface limit of a p-Laplacian phase field model. Math. Methods Appl. Sci. 41 (2018), no. 16, 6851–6865
  8. Jiménez-Casas, Ángela Asymptotic Behaviour of a Viscoelastic Thermosyphon Model.Chaotic Modeling and Simulation (CMSIM).
  9. Rodríguez Gomez, Alberto; Jiménez-Casas, Ángela Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform. American Journal of Engineering Research(AJER)
  10. Henry, David; Sastre-Gomez, Silvia Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity. Differential Integral Equations 31 (2018), no. 1-2, 1–26
  11. Brauer, Uwe; Karp, Lavi Local existence of solutions to the Euler-Poisson system, including densities without compact support. J. Differential Equations 264 (2018), no. 2, 755–785.

Year 2019

  1. Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
  2. Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary", Discrete and Continuous Dynamical Systems 24 (8) pp: 4217-4246, (2019)
  3. Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
  4. Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
  5. Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro. 'Interaction of localized large diffusion and boundary conditions', Journal of Differential Equations, Volume 267, Issue 5, p. 2687-2736 (2019).

Year 2020

  1. Robinson, J. C., & Rodríguez-Bernal, A., The heat flow in an optimal Fréchet space of unbounded initial data in \(\Bbb R^d\), J. Differential Equations, 269(11), 10277–10321 (2020). http://dx.doi.org/10.1016/j.jde.2020.07.017
  2. Pardo, R., & Sanjuán, A., Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth, Electron. J. Differential Equations, (), 114–17 (2020).
  3. López-García, D., & Pardo, R., A mathematical model for the use of energy resources: a singular parabolic equation, Math. Model. Anal., 25(1), 88–109 (2020). http://dx.doi.org/10.3846/mma.2020.9792
  4. Jiménez-Casas, Á., & Rodríguez-Bernal, A., PDE problems with concentrating terms near the boundary, Commun. Pure Appl. Anal., 19(4), 2147–2195 (2020). http://dx.doi.org/10.3934/cpaa.2020095
  5. Ferreira, R., & de Pablo, A., Grow-up for a quasilinear heat equation with a localized reaction, J. Differential Equations, 268(10), 6211–6229 (2020). http://dx.doi.org/10.1016/j.jde.2019.11.033
  6. Castro, A., Cossio, J., Herrón, S., Pardo, R., & Vélez, C., Infinitely many radial solutions for a sub-super critical $p$-Laplacian problem, Ann. Mat. Pura Appl. (4), 199(2), 737–766 (2020). http://dx.doi.org/10.1007/s10231-019-00898-x
  7. Brauer, U., & Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler-Poisson system, J. Anal. Math., 141(1), 113–163 (2020). http://dx.doi.org/10.1007/s11854-020-0125-4
  8. Arrieta, J. M., & Villanueva-Pesqueira, M., Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary, Commun. Pure Appl. Anal., 19(4), 1891–1914 (2020). http://dx.doi.org/10.3934/cpaa.2020083

Year 2021

  1. Pereira, M. C., & Sastre-Gomez, S., Nonlocal and nonlinear evolution equations in perforated domains, J. Math. Anal. Appl., 495(2), 124729–21 (2021). http://dx.doi.org/10.1016/j.jmaa.2020.124729
  2. Mavinga, N., & Pardo, R., Equivalence between uniform \(L^p^*\) a priori bounds and uniform \(L^\infty\) a priori bounds for subcritical $p$-Laplacian equations, Mediterr. J. Math., 18(1), 13–24 (2021). http://dx.doi.org/10.1007/s00009-020-01673-6
  3. Ferreira, R., & de Pablo, A., Blow-up rates for a fractional heat equation, Proc. Amer. Math. Soc., 149(5), 2011–2018 (2021). http://dx.doi.org/10.1090/proc/15165
  4. Clapp, M., Pardo, R., Pistoia, A., & Saldaña, A., A solution to a slightly subcritical elliptic problem with non-power nonlinearity, J. Differential Equations, 275(), 418–446 (2021). http://dx.doi.org/10.1016/j.jde.2020.11.030
  5. Cardone, G., Perugia, C., & Villanueva Pesqueira, M., Asymptotic behavior of a Bingham flow in thin domains with rough boundary, Integral Equations Operator Theory, 93(3), 24–26 (2021). http://dx.doi.org/10.1007/s00020-021-02643-7
  6. Brauer, U., & Karp, L., The non-isentropic relativistic Euler system written in a symmetric hyperbolic form, In (Eds.), Anomalies in partial differential equations (pp. 63–76) (2021). : Springer, Cham.
  7. Bezerra, F. D. M., Sastre-Gomez, S., & da Silva, S. H., Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition, Appl. Anal., 100(9), 1889–1904 (2021). http://dx.doi.org/10.1080/00036811.2019.1671973
  8. Arrieta J.M., J.C. Nakasato, M.C. Pereira, "The p-Laplacian equation in thin domains: The unfolding approach", Journal of Differential Equations 274 (2021) pp: 1-34
  9. Chhetri, N., Mavinga, M., & Pardo, R., Bifurcation from infinity with oscillatory nonlinearity for Neumann problem, Electron. J. Differential Equations, Specialissue(1), 279–292 (2021).

Year 2022

  1. Rodríguez-Bernal, A., & Sastre-Gómez, S., Nonlinear nonlocal reaction-diffusion problem with local reaction, Discrete Contin. Dyn. Syst., 42(4), 1731–1765 (2022). http://dx.doi.org/10.3934/dcds.2021170
  2. Rodríguez-Bernal, A., Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces, Nonlinear Anal., 221(), 112887–34 (2022). http://dx.doi.org/10.1016/j.na.2022.112887
  3. Ferreira, R., & de Pablo, A., A nonlinear diffusion equation with reaction localized in the half-line, Math. Eng., 4(3), 024–24 (2022). http://dx.doi.org/10.3934/mine.2022024
  4. Cholewa, J. W., & Rodriguez-Bernal, A., Sharp estimates for homogeneous semigroups in homogeneous spaces. Applications to PDEs and fractional diffusion in \(\Bbb R^N\), Commun. Contemp. Math., 24(1), 2050070–56 (2022). http://dx.doi.org/10.1142/S0219199720500704
  5. Cholewa, J. W., & Rodriguez-Bernal, A., On some PDEs involving homogeneous operators. Spectral analysis, semigroups and Hardy inequalities, J. Differential Equations, 315(), 1–56 (2022). http://dx.doi.org/10.1016/j.jde.2022.01.029
  6. Bandyopadhyay, S., Chhetri, M., Delgado, B. B., Mavinga, N., & Pardo, R., Maximal and minimal weak solutions for elliptic problems with nonlinearity on the boundary, Electron. Res. Arch., 30(6), 2121–2137 (2022). http://dx.doi.org/10.3934/era.2022107

Accepted for publication

  1. Brauer, U., & Karp, L., Global existence of a nonlinear wave equation arising from Nordström's theory of gravitation accepted for publication in Journal of Evolution equations, (preprint in the arXiv) https://arxiv.org/abs/1912.03643 (2019).

Submitted for publication

  1. J.M. Arrieta, A.N. Carvalho, E. Moreira, J. Valero, "Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem", Submitted


Books

  1. S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007
  2. R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).
  3. R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
  4. Rodríguez del Río. Una nueva visión de la geometría, Felix Klein. Colección Genios de las Matemáticas, RBA, Barcelona, 2017. (ISBN:978-84-473-9067-0). Translated into French (ISBN: 978-84-473-9611-5) and into Italian (ISSN: 2531-890X)
  5. Arrieta Algarra J.M., Ferreira de Pablo R, Pardo San Gil R, Rodríguez Bernal A, "Análisis Numérico de Ecuaciones Diferenciales". Paraninfo (2020) (ISBN: 9788428344418)