December 25, 2024, Wednesday, 359

Test2math

De Cadedif

(Diferencias entre revisiones)
(cases)
(distance)
 
Línea 6: Línea 6:
     &\displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_1- \Delta E_1 = \mu_1
     &\displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_1- \Delta E_1 = \mu_1
     |E_1|^2E_1+\beta |E_2|^2E_1,\quad x\in
     |E_1|^2E_1+\beta |E_2|^2E_1,\quad x\in
-
     \mathbb{R}^n,\quad t>0\\
+
     \mathbb{R}^n,\quad t>0\\[0.3cm]
     & \displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_2- \Delta E_2 = \mu_2
     & \displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_2- \Delta E_2 = \mu_2
     |E_2|^2E_2+\beta |E_1|^2E_2,\quad x\in \mathbb{R}^n,\quad t>0,
     |E_2|^2E_2+\beta |E_1|^2E_2,\quad x\in \mathbb{R}^n,\quad t>0,

Última versión de 14:12 24 abr 2016


  \begin{cases}
    &\displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_1- \Delta E_1 = \mu_1
    |E_1|^2E_1+\beta |E_2|^2E_1,\quad x\in
    \mathbb{R}^n,\quad t>0\\[0.3cm]
    & \displaystyle -{\rm i}\, \frac{\partial}{\partial t} E_2- \Delta E_2 = \mu_2
    |E_2|^2E_2+\beta |E_1|^2E_2,\quad x\in \mathbb{R}^n,\quad t>0,
  \end{cases}



the coupled parameter

\beta\in \mathbb{R},