|
|
| (23 ediciones intermedias no se muestran.) |
| Línea 1: |
Línea 1: |
| - | __TOC__
| + | __NOTOC__ |
| - | == Seminario del Departamento: CADEDIF Martes 27 de Noviembre de 2007== | + | |
| | + | *<big><u>Jornada de Dinámica Infinito Dimensional</u></big> |
| | + | ::Martes 27 de Noviembre de 2007, Departamento de Matemática Aplicada, UCM. 9:30-13:25, [[Media:jornada_27nov2007_2-3.pdf | [cartel]]] |
| | + | |
| | + | |
| | + | <!-- |
| | + | == Jornada de Dinámica Infinito Dimensional: Martes 27 de Noviembre de 2007== |
| | | | |
| | <center> | | <center> |
| Línea 88: |
Línea 94: |
| | continuation after quenching of the solutions. Joint work with A. de | | continuation after quenching of the solutions. Joint work with A. de |
| | Pablo, Mayte Pérez-Llanos, F. Quirós and J. D. Rossi. | | Pablo, Mayte Pérez-Llanos, F. Quirós and J. D. Rossi. |
| - | | + | --> |
| - | ==iMdea matemáticas:seminario 29 de noviembre 2007 ==
| + | |
| - | | + | |
| - | | + | |
| - | <center>
| + | |
| - | Dpto. de Matemáticas, sala 520 Facultad de Ciencias -
| + | |
| - | | + | |
| - | UAM Ciudad Universitaria de Cantoblanco 28049 Madrid
| + | |
| - | </center>
| + | |
| - | | + | |
| - | | + | |
| - | '''10:30 · 11:10 Hardy inequalities in twisted waveguides'''
| + | |
| - | <center>
| + | |
| - | | + | |
| - | David KREJ CIRÍK
| + | |
| - | | + | |
| - | Department of Theoretical Physics, Nuclear Physics Institute, Academy
| + | |
| - | | + | |
| - | of Sciences, Rez, Czech Republic e-mail: krejcirik@ujf.cas.cz
| + | |
| - | </center>
| + | |
| - | | + | |
| - | | + | |
| - | The Dirichlet Laplacian in tubular domains is a simple but remarkably
| + | |
| - | successful model for the quantum Hamiltonian in mesoscopic waveguide
| + | |
| - | systems. We make an overview of geometrically induced Hardy-type
| + | |
| - | inequalities established recently for the Laplacian in twisted tubes,
| + | |
| - | and mention consequences for the electronic transport. We begin by
| + | |
| - | recalling the classical Hardy inequality and its relation to
| + | |
| - | geometric, spectral, stochastic and other properties of the underlying
| + | |
| - | Euclidean space. After discussing the complexity of the problem when
| + | |
| - | reformulated for quasi-cylindrical subdomains, we give a proof of the
| + | |
| - | Hardy inequality due to a twist of three-dimensional tubes of uniform
| + | |
| - | cross-section and use it to prove certain stability of the spectrum.
| + | |
| - | We also discuss similar effects induced by curvature of the ambient
| + | |
| - | space or switch of boundary conditions.
| + | |
| - | | + | |
| - | '''11:10 · 11:50 Existence and continuity of global attractors for a
| + | |
| - | class of non local evolution equations '''
| + | |
| - | | + | |
| - | <center>
| + | |
| - | Antônio L. PEREIRA
| + | |
| - | | + | |
| - | Instituto de Matemática e Estatística-USP
| + | |
| - | | + | |
| - | Rua do Matão, 1010, Cidade Universitária, São Paulo-SP,
| + | |
| - | | + | |
| - | Brasil e-mail: alpereir@ime.usp.br
| + | |
| - | </center>
| + | |
| - | In this work we prove the existence of a compact global attractor for
| + | |
| - | the flow of the equation
| + | |
| - | <center>
| + | |
| - | <math>
| + | |
| - | \frac{\partial m(r,t)}{\partial t} = -m(r,t)+g(\beta J*M(r,t)+\beta h)
| + | |
| - | \qquad h, \beta \geq 0
| + | |
| - | </math>
| + | |
| - | </center>
| + | |
| - | | + | |
| - | in
| + | |
| - | <math>
| + | |
| - | L^{2}(S^{1}).
| + | |
| - | </math>
| + | |
| - | We also show that the flow is gradient and the global attractor
| + | |
| - | depends continuosly on the parameters h and . AMS subject
| + | |
| - | classification: 34G20,47H15.
| + | |
| - | | + | |
| - | '''11:50 · 12:10 Coffee break '''
| + | |
| - | | + | |
| - | | + | |
| - | '''12:10 · 13:10 Creating materials with desired refraction
| + | |
| - | coefficient'''
| + | |
| - | <center>
| + | |
| - | A. G. RAMM
| + | |
| - | | + | |
| - | Mathematics Department, Kansas State University,
| + | |
| - | | + | |
| - | Manhattan, KS 66506-2602, USA
| + | |
| - | | + | |
| - | ramm@math.ksu.edu
| + | |
| - | </center>
| + | |
| - | | + | |
| - | A method is given for calculation of a distribution of small impedance
| + | |
| - | particles, which should be embedded in a bounded domain, filled with
| + | |
| - | material with known refraction coefficient, in order that the
| + | |
| - | resulting new material would have a desired refraction coefficient.
| + | |
| - | The new material may be created so that it has some desired
| + | |
| - | wave-focusing properies. For example, it can scatter plane wave mostly
| + | |
| - | in a fixed solid angle. The inverse scattering problem with scattering
| + | |
| - | data given at a fixed wave number and at a fixed incident direction is
| + | |
| - | formulated and solved.
| + | |
| - | | + | |
| - | [http://www.imdea.org iMdea]
| + | |