December 25, 2024, Wednesday, 359

Workshops

De Cadedif

(Diferencias entre revisiones)
 
(27 ediciones intermedias no se muestran.)
Línea 1: Línea 1:
-
== Seminario del Departamento: CADEDIF ==
+
__NOTOC__
 +
 
 +
*<big><u>Jornada de Dinámica Infinito Dimensional</u></big>
 +
::Martes 27 de Noviembre de 2007, Departamento de Matemática Aplicada, UCM. 9:30-13:25, [[Media:jornada_27nov2007_2-3.pdf | [cartel]]]
 +
 
 +
 
 +
<!--
 +
== Jornada de Dinámica Infinito DimensionalMartes 27 de Noviembre de 2007==
<center>
<center>
Línea 14: Línea 21:
</center>
</center>
-
9:30-10:20. "Attractors for Parabolic Problems in dumbbell domains",  
+
'''9:30-10:20. "Attractors for Parabolic Problems in dumbbell domains", '''
-
German Lozada, Univ. Del Estado de Sao Paulo, Brasil 10:20-11:10.
+
German Lozada, Univ. Del Estado de Sao Paulo, Brasil  
-
"Semilinear Damped Wave Equations with nonlinearities",  
+
'''10:20-11:10. "Semilinear Damped Wave Equations with nonlinearities", '''
Jan Cholewa, U. Silesia (Katowice), Polonia  
Jan Cholewa, U. Silesia (Katowice), Polonia  
-
11:15-11:45. Café  
+
'''11:15-11:45. Café '''
-
11:45-12:35. "Dynamical approach to elliptic BVP in asymptotically symmetric unbounded domains",  
+
'''11:45-12:35. "Dynamical approach to elliptic BVP in asymptotically symmetric unbounded domains", '''
Messoud Efendiev, Technische Universistät München, Alemania  
Messoud Efendiev, Technische Universistät München, Alemania  
-
12:35-13:25. "Non simultaneous quenching in a system of heat equations coupled at the boundary",  
+
'''12:35-13:25. "Non simultaneous quenching in a system of heat equations coupled at the boundary", '''
Raul Ferreira, U. Complutense
Raul Ferreira, U. Complutense
-
Organiza: Grupo de Investigación CADEDIF de la UCM. Parcialmente financiado por: Proyecto MTM 2006-08262, "Programa de financiación de Grupos de Investigación UCM-Comunidad de Madrid GR69/06-920894" y Departamento de Matemática Aplicada, UCM Más información: José M. Arrieta [arrieta@mat.ucm.es] Anibal Rodriguez Bernal [arober@mat.ucm.es]
+
Organiza: Grupo de Investigación CADEDIF de la UCM. Parcialmente
 +
financiado por: Proyecto MTM 2006-08262, "Programa de financiación de
 +
Grupos de Investigación UCM-Comunidad de Madrid GR69/06-920894" y
 +
Departamento de Matemática Aplicada, UCM Más información: José M.
 +
Arrieta arrieta@mat.ucm.es  Anibal Rodriguez Bernal arober@mat.ucm.es
-
== ABSTRACTS ==
+
<center> '''ABSTRACTS '''  </center>
'''"Attractors for Parabolic Problems in dumbbell domains"  '''
'''"Attractors for Parabolic Problems in dumbbell domains"  '''
German Lozada, Univ. del Estado de Sao Paulo, Brasil
German Lozada, Univ. del Estado de Sao Paulo, Brasil
-
In this talk we analyze the dynamics of a parabolic equation with homogeneous Neumann boundary conditions in the dumbbell domain. We provide an appropriate functional setting to treat this problem and show that the attractors behave upper semicontinuous as the channel shrinks to a line segment.
+
In this talk we analyze the dynamics of a parabolic equation with
 +
homogeneous Neumann boundary conditions in the dumbbell domain. We
 +
provide an appropriate functional setting to treat this problem and
 +
show that the attractors behave upper semicontinuous as the channel
 +
shrinks to a line segment.
-
'''"Semilinear Damped Wave Equations with fast growing Cholewa, U. Silesia (Katowice), Polonia nonlinearities" '''
+
'''"Semilinear Damped Wave Equations with fast growing Cholewa, U.
 +
Silesia (Katowice), Polonia nonlinearities" '''
-
Jan
+
Jan Cholewa, U. Silesia (Katowice), Polonia
-
A class of the second order in time semilinear partial differential equations is considered in the Banach space setting. The results concerning local existence, regularity, bootstrapping continuation, and asymptotic properties of solutions are discussed in case when the nonlinear term satisfies certain critical growth conditions.
+
A class of the second order in time semilinear partial differential
 +
equations is considered in the Banach space setting. The results
 +
concerning local existence, regularity, bootstrapping continuation,
 +
and asymptotic properties of solutions are discussed in case when the
 +
nonlinear term satisfies certain critical growth conditions.
-
"Dynamical approach to elliptic BVP in asymptotically symmetric unbounded domains", Messoud Efendiev, Technische Universistät München, Alemania
+
'''"Dynamical approach to elliptic BVP in asymptotically symmetric unbounded domains", '''
-
We consider dynamical approach to the elliptic problem in asymptotically symmetric unbounded domain and study the large-time behaviour of solutions. Due to the lack of the uniqueness of the solutions the standard approach based both on the semigroup theory and on elliptic machinery fails. Our approach based on the trajectory dynamical systems. Symmetrization and stabilization of the solitions as well as open problem will also be discussed.
+
 
 +
Messoud Efendiev, Technische Universistät München, Alemania
 +
 
 +
We consider dynamical approach to the elliptic problem in
 +
asymptotically symmetric unbounded domain and study the large-time
 +
behaviour of solutions. Due to the lack of the uniqueness of the
 +
solutions the standard approach based both on the semigroup theory and
 +
on elliptic machinery fails. Our approach based on the trajectory
 +
dynamical systems. Symmetrization and stabilization of the solitions
 +
as well as open problem will also be discussed.
'''"Non simultaneous quenching in a system of heat equations coupled at the boundary",  '''
'''"Non simultaneous quenching in a system of heat equations coupled at the boundary",  '''
Raul Ferreira, U. Complutense
Raul Ferreira, U. Complutense
-
We study the formation of singularities in finite time for solutions of the heat equations coupled at the boundary through a nonlinear flux at one border and zero flux at the other border. We characterize, in terms of the parameters involved when non-simultaneous quenching may appear. Moreover, if quenching is non-simultaneous we find the quenching rate and the quenching set. We also find a possible continuation after quenching of the solutions. Joint work with A. de Pablo, Mayte Pérez-Llanos, F. Quirós and J. D. Rossi.
 
-
 
-
==iMdea matemáticas:seminario  29 de noviembre 2007 ==
 
-
 
-
 
-
<center>
 
-
Dpto. de Matemáticas, sala 520 Facultad de Ciencias -
 
-
 
-
UAM Ciudad Universitaria de Cantoblanco 28049 Madrid
 
-
</center>
 
-
 
-
 
-
'''10:30 · 11:10 Hardy inequalities in twisted waveguides'''
 
-
<center>
 
-
 
-
David KREJ CIRÍK
 
-
 
-
Department of Theoretical Physics, Nuclear Physics Institute,  Academy
 
-
 
-
of Sciences, Rez, Czech Republic e-mail: krejcirik@ujf.cas.cz
 
-
</center>
 
-
 
-
 
-
The Dirichlet Laplacian in tubular domains is a simple but remarkably
 
-
successful model for the quantum Hamiltonian in mesoscopic waveguide
 
-
systems. We make an overview of geometrically induced Hardy-type
 
-
inequalities established recently for the Laplacian in twisted tubes,
 
-
and mention consequences for the electronic transport. We begin by
 
-
recalling the classical Hardy inequality and its relation to
 
-
geometric, spectral, stochastic and other properties of the underlying
 
-
Euclidean space. After discussing the complexity of the problem when
 
-
reformulated for quasi-cylindrical subdomains, we give a proof of the
 
-
Hardy inequality due to a twist of three-dimensional tubes of uniform
 
-
cross-section and use it to prove certain stability of the spectrum.
 
-
We also discuss similar effects induced by curvature of the ambient
 
-
space or switch of boundary conditions.
 
-
 
-
'''11:10 · 11:50 Existence and continuity of global attractors for a
 
-
class of non local evolution equations  '''
 
-
 
-
<center>
 
-
Antônio L. PEREIRA
 
-
 
-
Instituto de Matemática e Estatística-USP
 
-
 
-
Rua do Matão, 1010, Cidade Universitária, São Paulo-SP,
 
-
 
-
Brasil  e-mail: alpereir@ime.usp.br
 
-
</center>
 
-
In this work we prove the existence of a compact global attractor for
 
-
the flow of the equation
 
-
<center>
 
-
<math>
 
-
\frac{\partial m(r,t)}{\partial t} = -m(r,t)+g(\beta J*M(r,t)+\beta h)
 
-
\qquad h, \beta \geq 0
 
-
</math>
 
-
</center>
 
-
 
-
in
 
-
<math>
 
-
L^{2}(S^{1}).
 
-
</math>
 
-
We also show that the flow is gradient and the global attractor
 
-
depends continuosly on the parameters h and . AMS subject
 
-
classification: 34G20,47H15.
 
-
 
-
'''11:50 · 12:10 Coffee break '''
 
-
 
-
 
-
'''12:10 · 13:10 Creating materials with desired refraction
 
-
coefficient'''
 
-
<center>
 
-
A. G. RAMM
 
-
 
-
Mathematics Department, Kansas State University,
 
-
 
-
Manhattan, KS 66506-2602, USA
 
-
 
-
ramm@math.ksu.edu
 
-
</center>
 
-
 
-
A method is given for calculation of a distribution of small impedance
 
-
particles, which should be embedded in a bounded domain, filled with
 
-
material with known refraction coefficient, in order that the
 
-
resulting new material would have a desired refraction coefficient.
 
-
The new material may be created so that it has some desired
 
-
wave-focusing properies. For example, it can scatter plane wave mostly
 
-
in a fixed solid angle. The inverse scattering problem with scattering
 
-
data given at a fixed wave number and at a fixed incident direction is
 
-
formulated and solved.
 
-
[http://www.imdea.org iMdea]
+
We study the formation of singularities in finite time for solutions
 +
of the heat equations coupled at the boundary through a nonlinear flux
 +
at one border and zero flux at the other border. We characterize, in
 +
terms of the parameters involved when non-simultaneous quenching may
 +
appear. Moreover, if quenching is non-simultaneous we find the
 +
quenching rate and the quenching set. We also find a possible
 +
continuation after quenching of the solutions. Joint work with A. de
 +
Pablo, Mayte Pérez-Llanos, F. Quirós and J. D. Rossi.
 +
-->

Última versión de 07:37 19 oct 2008


  • Jornada de Dinámica Infinito Dimensional
Martes 27 de Noviembre de 2007, Departamento de Matemática Aplicada, UCM. 9:30-13:25, [cartel]