December 26, 2024, Thursday, 360

Publications

De Cadedif

(Diferencias entre revisiones)
(Año 2008: linebreak)
(Add seminarios in order to generate a new page)
 
(146 ediciones intermedias no se muestran.)
Línea 1: Línea 1:
-
== Publicaciones en revistas internacionales  == 
+
__TOC__
-
=== Año 2002  ===
+
-
# J. M. Arrieta, N. Consul, A. Rodríguez-Bernal “Pattern Formation from boundary reaction”''' '''''Fields Inst. Commun.'', 31, pp. 13-18, Amer. Math. Soc., Providence, RI, (2002).''' '''<br/>
+
-
# X. Biao Lin, I. Bosch “Heteroclinic and periodic cycles in a perturbed convection model”'' Journal of Differential Equations'' 182 pp. 219-265 (2002)<br/>
+
-
# R. Ferreira, P. Groisman y J. D. Rossi, “Numerical Blow-up for a nonlinear problem with a nonlinear boundary condition”'' Math. Models and Methods in Applied Sciences'', 12, 461--483, 2002<br/>
+
-
# R. Ferreira, V. A. Galaktionov y J. L. Vázquez, “Uniqueness of Asymptotic Profiles for and extinction Problem”'' Nonlinear Analysis T. M. A.'', 50, 495--507, 2002<br/>
+
-
# R. Ferreira, F. Quiros y J. D. Rossi “The balance between nonlinear inwards and outwards boundary-flux for nonlinear heat equations” ''Journal of Differential Equation'', 184, 259--282, 2002<br/>
+
-
# A. Jiménez-Casas and A. Rodríguez-Bernal. Asymptotic behaviour for a phase field model in higher order Sobolev spaces. ''Rev. Mat. Complut.'', 15(1):213-248, 2002.<br/>
+
-
# A. Rodríguez-Bernal. Some qualitative dynamics of nonlinear boundary conditions. ''Internat. J. Bifur. Chaos Appl. Sci. Engrg.'', 12(11):2333-2342. Spatio-temporal comp lexity. (2002)<br/>
+
-
# A. Rodríguez-Bernal. Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data. ''J. Differential Equations,'' 181(1):165-196, 2002.<br/>
+
-
# R. Dager, E. Zuazua “Spectral boundary controllability of networks of strings”, C.R. Acad. Sci. Paris, Serie I, 334 (7), 545-550, (2002)<br/>
+
-
=== Año 2003  ===
+
-
# J. Fernández Bonder, R. Ferreira y J. D. Rossi, “Uniform bounds for the best Sobolev trace constant” ''Advanced Nonlinear Studies'', 3, 181--192, 2003<br/>
+
-
# R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “The blow-up profile for a fast diffusion equation with a nonlinear boundary condition” ''Rocky Mountain J. Math,'' 33, 123--146, 2003<br/>
+
-
# R. Ferreira y J. L. Vázquez “Study of self-similarity for the fast difusión equation”
+
-
# ''Advances in Differential Equations'', 8, 1125--1152, 2003<br/>
+
-
# R. Ferreira, P. Groisman y J. D. Rossi , “An adaptive numerical scheme for a parabolic problem with blow-up”'' IMA Journal of Numerical Análisis'', 23, 439--463, 2003<br/>
+
-
# M. Negreanu, E. Zuazua, “Uniform boundary controllabillity of a discrete 1-D wave equation” , ''System and Control Letters'', 48, Issues 3-4 pp 261-279 (2003)<br/>
+
-
# M. Negreanu, E. Zuazua, “A 2-d grid algorithm for the 1-d wave equation” Proceedings of the Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation, Waves 2003, Physcis and Astronomy, pp. 213-217, Springer (2003)<br/>
+
-
# R. Rodríguez del Río, E. Zuazua, “Series de Fourier y fenómeno de Gibbs”, Cubo Matemática Eduacional, 5 pp. 185-224 (2003)<br/>
+
-
=== Año 2004  ===
+
-
# J.M. Arrieta "El Cálculo y la Modelización Matemática", en R. Rodríguez, E. Zuazua, ''De la Aritmética al Análisis: Historia y Desarrollo reciente en Matemáticas,'' Aulas de Verano, Instituto Superior de Formación del Profesorado, Ministerio de Educación y Ciencia,pp 11-57 (2004)<br/>
+
-
# J. M. Arrieta, A.N. Carvalho "Spectral Convergence and Nonlinear Dynamics for Reaction-Diffusion Equations under Perturbations of the Domain" ''Journal of Diff. Equations ''199, pp. 143-178 (2004)<br/>
+
-
# J. M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Asymptotic Behavior and Attractors for Reaction Diffusion Equations in Unbounded Domains" ''Nonlinear Analysis, ''56, pp. 515-554 (2004) <br/>
+
-
# J. M. Arrieta, N. Consul, A. Rodríguez-Bernal, "Stable boundary layers in a diffusion problem with nonlinear reaction at the boundary" ''Z.. Angew. Math. Phys. ''55, pp. 1-14 (2004) <br/>
+
-
# J. M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Linear parabolic equations in locally uniform spaces" ''Mathematical Models and Methods in Applied Sciences'', 14, n. 2, 253-294 (2004)<br/>
+
-
# J. M. Arrieta, A. Rodríguez-Bernal and P. Souplet, "Boundedness of Global Solutions for Nonlinear Parabolic Equations involving Gradient Blow-up Phenomena" ''Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. ''Issue 1, Volume 3/2004, Series 5, pp 1-15, (2004) <br/>
+
-
# J. M. Arrieta, A. Rodríguez-Bernal "Localization on the boundary of blow-up for reaction-diffusion equations with nonlinear boundary conditions" ''Communications in Partial Differential Equations'' 29, 7&8, pp. 1127-1148 (2004) <br/>
+
-
# J.M. Arrieta, A. Rodríguez-Bernal "Non well posedness of parabolic equations with supercritical nonlinearities" ''Communications in Contemporary Mathematics'' 6, n 5, pp. 733-764 (2004)<br/>
+
-
# E. Chasseigne y R.Ferreira, “Monotone approximations of Green functions” ''Comptes Rendus Mathématique.'' Académie des Sciences. Paris, 339, 395--400, 2004<br/>
+
-
# R. Ferreira, P. Groisman y J. D. Rossi., “Numerical blow-up for the porous medium equation with a source”'' Numerical Methods for Partial Differential Eq,'' 20, 552--575, 2004<br/>
+
-
# R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “Superfast quenching”'' Journal Differential Equations'', 199, 189--209, 2004<br/>
+
-
# M. Negreanu, E. Zuazua “Discrete Ingham inequalities and applications”, ''CRAS Paris'', Serie I. Math 338 pp 281-286 (2004)<br/>
+
-
# L. Popescu and A. Rodríguez-Bernal. On a singularly perturbed wave equation with dynamic boundary conditions. ''Proc. Roy. Soc. Edinburgh ''Sect. A, 134(2):389-413, 2004.<br/>
+
-
# R. Dager, “Networks of strings: modelization and control of vibrations”, e-STA, vol 1, (2004)<br/>
+
-
# R. Dager, “Observation and control of vibrations in tree-shaped networks of strings” SIAM Journal on Control and Optimization 43, 590-623, (2004)<br/> 
+
-
=== Año 2005  ===
+
-
# J.M. Arrieta, A. Rodríguez-Bernal. "Ill posed problems with supercritical nonlinearities''. International Conference on Differential Equations (EQUADIFF'03) Hasselt, Belgium. World Scientific, pp 277 280, (2005) , <br/>
+
-
# J.M. Arrieta, A. Jiménez-Casas, A. Rodríguez-Bernal "Nonhomogenous flux condition as limit of localized reactions''. International Conference on Differential Equations (EQUADIFF'03) Hasselt, Belgium. World Scientific, pp 293-295, (2005), <br/>
+
-
# J.M. Arrieta, S. M. Bruschi "Problemas de valor de fronteira em domínios com oscilaçōes na fronteira", ''Seminario Brasileiro de Análise,'' Edición nº 62, Noviembre (2005), <br/>
+
-
# R. Ferreira, A. de Pablo, F. Quiros y J. L. Vázquez, “Blow-up. El problema matemático de explosión para ecuaciones y sistemas de reacción difusión” ''Boletín de la Soc. Española de Matemática Aplicada'', 32, 75-111, 2005<br/>
+
-
# P. Quittner and A. Rodríguez-Bernal. Complete and energy blow-up in parabolic problems with nonlinear boundary conditions. ''Nonlinear Anal. TMA'', 62(5):863-875, (2005).<br/>
+
-
# A. Rodríguez-Bernal and A. Vidal-López. Extremal equilibria and asymptotic behavior of parabolic nonlinear reaction-diffusion equations. In ''Nonlinear elliptic and parabolic problems: A Special Tribute to the Work of H. Amann.'', volume 64 of Progr. Nonlinear Differential Equations Appl., pages 509-516. Birkhäuser, Basel, (2005).<br/>
+
-
# A. Rodríguez-Bernal. Parabolic equations in locally uniform spaces. In ''Nonlinear elliptic and parabolic problems,'' volume 64 of Progr. Nonlinear Differential Equations Appl., pages 421-432. Birkhäuser, Basel, (2005).<br/>
+
-
# A. Rodríguez-Bernal and R. Willie. Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic problem. ''Discrete Contin. Dyn. Syst.'' Ser. B, 5(2):385-410, (2005).<br/>
+
-
# R. Ferreira, A. de Pablo y M. Pérez-Llanos, “Numerical blow-up for the p-laplacian equation with a source”, ''Computational Methods in Applied Mathematics ''5, 137-154, (2005)<br/>
+
-
# R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “On the quenching set for a fast diffusion equation.Regional quenching”'', Proceedings of the Royal Society of Edinburgh. Section A, ''135, 585—601, (2005)<br/>
+
-
# A. Jiménez-Casas, “Metastable solutions for the thin-interface limit of a phase-field model” ''Nonlinear Analysis'', ''Volume ''63, Issues 5-7,  963-970, (2005)<br/>
+
-
# A. Jiménez-Casas, “Well posedness and asymptotic behavior of a closed loop thermosyphon”, World Scientific Publications pp: 59-74, (2005)<br/> 
+
-
=== Año 2006  ===
+
-
# R. Dager, E. Zuazua, “Wave propagation, observation and control of 1-D flexible multi-structures”, Mathematiques et Applications 50, Springer-Berlag Berlin (2006), <nowiki>x+221 pp. ISBN: 978-3-540-27239-9; 3-540-27239-9 [LIBRO DE INVESTIGACIÓN]</nowiki>
+
-
# I. Bosch, A. M. Minzoni, “Chaotic behavior in a singularly perturbed system” ''Nonlinearity'' 19, 1535-1551 (2006)<br/>
+
-
# M. Negreanu, E. Zuazua “Discrete Ingham inequalities and applications”, ''SIAM Journal of Numerical Analysis,'' Volume 44, Issue I (2006) pp 412-4448<br/>
+
-
# A. Rodríguez-Bernal and A. Vidal, “Asymptotic behavior of positive solutions of nonautonomous reaction-diffusion equations”, ''Bol. Soc. Esp. Mat. Apl.'' 34, 99-104 (2006) <br/>
+
-
# J. C. Robinson, A. Vidal–López, “Minimal periods of semilinear evolution equations with Lipschitz nonlinearity”. ''Jounal of Differential Equations'', Vol. 220 (2), 396–406 (2006).<br/>
+
-
# J.M. Arrieta, S. M. Bruschi "Boundary Oscillations and Nonlinear Boundary Conditions",  ''Comptes Rendus Mathematique, ''t. 343, Series I, pp. 99-104 (2006)<br/>
+
-
# J.M. Arrieta, A. Rodríguez-Bernal, J. Valero "Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity", ''International Journal of Bifurcation and Chaos'' 16,  n. 10,  pp. 2965-2984  (2006)<br/>
+
-
# J.M. Arrieta A.N. Carvalho and G. Lozada-Cruz "Dynamics in dumbbell domains I. Continuity of the set of equilibria" ''Journal of Differential Equations ''231, Issue 2, pp. 551-597, (2006),<br/>
+
-
# R. Ferreira, A. de Pablo y J. L. Vázquez, “Classification of blow-up with nonlinear diffusion and localized reaction”, ''Journal Differential Equations ''231, 195—211, (2006)<br/>
+
-
# R. Ferreira, A. de Pablo, G. Reyes y A. Sánchez, “The interfaces of an inhomogeneous porous médium equation with convection”'' Communications in Partial Differential Equation''s , 31, 497—514, (2006)<br/>
+
-
# R. Ferreira, A. de Pablo y J. D. Rossi, “Blow-up for a degenerate diffusion problem not in divergence form”, ''Indiana University Mathematics Journal '', 55, 955—974, (2006)<br/>
+
-
# R. Ferreira, A. de Pablo, F. Quiros y J. D. Rossi, “Non-simultaneous quenching in a system of heat equations coupled at the boundary”'' Zeitschrift fur Angewandte Mathematik und Physik '', 57, 586—594, (2006).<br/>
+
-
# R. Ferreira, A. de Pablo y J. L. Vázquez, “Classification of blow-up with nonlinear diffusion and localized reaction” Aparecerá en ''Journal Differential Equations ''231, 195-211 (2006)<br/>
+
-
# R. Pardo, V. M. Pérez-García, “Dissipative solutions that cannot be trapped”, ''Phys. Rev. Lett.'' 97, (2006). <br/>
+
-
# R. Dager, A. Presa, “Duality of the space of germs of harmonic vector fields on a compact”, C.R. Acad. Sci. Paris, Serie I, 343 (1), 19-22, (2006)<br/>
+
-
# R. Dager, “Insensitizing controls for the 1-D wave equation”, SIAM Journal on Control and Optimization 45, 1758-1768, (2006)<br/> 
+
-
=== Año 2007  ===
+
-
# J.M. Arrieta, R. Pardo, A. Rodríguez-Bernal "Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity", ''Proc. of the Royal Society of Edinburgh A,'' Vol.137, Issue 02,  225-252. (2007),<br/>
+
-
# A. Rodríguez-Bernal, R. Willie, “Nesting inertial manifolds of reaction-diffusion equations and large diffusivity. ''Nonlinear Analisis'' 67, 70-93 (2007)<br/>
+
-
# A. Rodríguez-Bernal, A. Vidal, “Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems”, ''Disc. Cont. Dyn. Systems ''18, 537--567, (2007)<br/>
+
-
# J.A. Langa, J.C. Robinson, A.Rodríguez-Bernal, A. Suárez, A. Vidal, “Existence and non-existence of unbounded forward attractor for a class of nonautonomous reaction diffusion equations”. ''Disc. Cont. Dyn. Systems ''18, 483—497, (2007)<br/>
+
-
# J.M. Arrieta, S.M. Bruschi “Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformation”, ''Mathematical Models and Methods in Applied Sciences'' 17, nº 10 (2007)<br/>
+
-
# R. Ferreira, A. de Pablo y J. D. Rossi, “Blow-up with logarithmic nonlinearities”, ''Journal Differential Equations ''240, Issue 1, Pages 196-215 (2007)<br/>
+
-
# J.C. Robinson, A. Rodríguez-Bernal, A. Vidal-López, “Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems”, Journal of Differential Equations 238, 289-337 (2007)<br/>
+
-
# U. Brauer, L. Karp, “Local existence of classical solutions of the Einstein-Euler system using weighted Sobolev spaces of fractional order”, Comptes Rendus Mathematique 345, pp 49-54 (2007)<br/>
+
-
# J. A. Langa, J. C. Robinson, A. Suárez, A. Vidal-López, “The stability of attractors for non-autonomous perturbation of gradient-like systems”, ''Journal of Differential Equations'' 234, 605-627 (2007). <br/>
+
-
# J. M. Arrieta and A. Rodríguez-Bernal, “Blow up versus global boundedness of solutions of reaction diffusion equations with nonlinear boundary conditions”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 1-7 <br/>
+
-
# J. M. Arrieta, A. Jimenéz-Casas and A. Rodríguez-Bernal, “Robin type conditions arising from concentrated potentials”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 157-164 <br/>
+
-
# A. de Pablo, M. Pérez-Llanos and R. Ferreira''', “'''Numerical blow-up for the ''p''-Laplacian equation with a nonlinear source” Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 363-367<br/>
+
-
# J. M. Arrieta, N. Moya, A. Rodríguez-Bernal''', “'''Dissipative dynamics of reaction diffusion equations in ''R^N” ''Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007), pp 405-414.<br/>
+
-
# A. Rodríguez-Bernal and A. Vidal-López''', “'''Extremal equilibria for parabolic non-linear reaction-diffusion equations”, Proceedings of Equadiff 11, Editors: M.Fila, A.Handlovicova, K.Mikula, M.Medved, P.Quittner and D.Sevcovic (2007). pp 531-539 <br/>
+
-
# J.M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodríguez-Bernal, "Dissipative parabolic equations in locally uniform spaces", ''Mathematische Nachrichten ''280, Issue 15 (2007)<br/> 
+
-
=== Año 2008 ===
+
-
#J.M. Arrieta:" On boundedness of solutions of reaction-diffusion equations with nonlinear boundary conditions" Proceedings of the American Mathematical Society 136, Issue 1, pp. 151-160 (2008)
+
== Publications in peer reviewed journals  == 
 +
=== Publications before 2017===
 +
[[Publications before 2017]] [[Seminarios]]
-
#J.M. Arrieta, N. Moya, A. Rodríguez-Bernal: "On the finite dimension of attractors of parabolic problems in <math>R^N </math> with general potentials", Nonlinear Analysis, Theory Methods and Applications 68, Issue 5, pp. 1082-1099 (2008)
+
===  Year 2017===
 +
# Ferreira, Raúl; Pérez-Llanos, Mayte A nonlocal operator breaking the Keller-Osserman condition. Adv. Nonlinear Stud. 17 (2017), no. 4, 715–725.
 +
# Mavinga, Nsoki; Pardo, Rosa Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 649–671.
 +
# Castro, Alfonso; Pardo, Rosa Infinitely many stability switches in a problem with sublinear oscillatory boundary conditions. J. Dynam. Differential Equations 29 (2017), no. 2, 485–499.
 +
# Castro, Alfonso; Pardo, Rosa A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.
 +
# Mavinga, N.; Pardo, R. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188
 +
# Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains. Integral Equations Operator Theory 89 (2017), no. 3, 377–408.
 +
# Arrieta, José M.; Santamaría, Esperanza Distance of attractors of reaction-diffusion equations in thin domains. J. Differential Equations 263 (2017), no. 9, 5459–5506.
 +
# Arrieta, José M.; Lamberti, Pier Domenico Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differential Equations 263 (2017), no. 7, 4222–4266.
 +
# Arrieta, José M.; Villanueva-Pesqueira, Manuel Thin domains with non-smooth periodic oscillatory boundaries. J. Math. Anal. Appl. 446 (2017), no. 1, 130–164.
 +
# Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. J. Abstr. Differ. Equ. Appl. 8 (2017), no. 2, 1–69.
 +
# Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal Some general models of traffic flow in an isolated network. Math. Methods Appl. Sci. 40 (2017), no. 11, 3982–4000.
 +
# Rodríguez-Bernal, Aníbal The heat equation with general periodic boundary conditions. Potential Anal. 46 (2017), no. 2, 295–321.
 +
# Quesada, Carlos; Rodríguez-Bernal, Aníbal Second order linear parabolic equations in uniform spaces in RN. Rev. Mat. Complut. 30 (2017), no. 1, 63–78.
 +
# Cholewa, Jan W.; Rodriguez-Bernal, Anibal Linear higher order parabolic problems in locally uniform Lebesgue's spaces. J. Math. Anal. Appl. 449 (2017), no. 1, 1–45.
 +
# Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2669–2680.
 +
# Jiménez-Casas, Ángela Asymptotic Behaviour of the Nonlinear Dynamical System Governing a Thermosyphon Model. Chaotic Modeling and Simulation (CMSIM).
-
#J. Arrieta, A. Jimenez-Casas, A. Rodriguez-Bernal "Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating in the boundary" Revista Matemática Iberoamericana, 24 nº 1, pp. 183- 211 (2008)
+
=== Year 2018  ===
 +
# Ferreira, R.; de Pablo, A. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions. Rev. Mat. Complut. 31 (2018), no. 3, 805–832.
 +
# Ferreira, Raul Blow-up for a semilinear heat equation with moving nonlinear reaction. Electron. J. Differential Equations 2018, Paper No. 32, 11 pp.
 +
# Damascelli, Lucio; Pardo, Rosa A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl. 41 (2018), 475–496
 +
# Arrieta, José M.; Santamaría, Esperanza C1,θ-estimates on the distance of inertial manifolds. Collect. Math. 69 (2018), no. 3, 315–336. 35K90 (35B42)
 +
# Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Boundary homogenization for a triharmonic intermediate problem. Math. Methods Appl. Sci. 41 (2018), no. 3, 979–985.
 +
# Robinson, James C.; Rodríguez-Bernal, Aníbal Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Adv. Math. 334 (2018), 488–543.
 +
# Jiménez-Casas, Ángela Metastable solutions for the thin-interface limit of a p-Laplacian phase field model. Math. Methods Appl. Sci. 41 (2018), no. 16, 6851–6865
 +
# Jiménez-Casas, Ángela Asymptotic Behaviour of a Viscoelastic Thermosyphon Model.Chaotic Modeling and Simulation (CMSIM).
 +
# Rodríguez Gomez, Alberto; Jiménez-Casas, Ángela Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform. American Journal of Engineering Research(AJER)
 +
# Henry, David; Sastre-Gomez, Silvia Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity. Differential Integral Equations 31 (2018), no. 1-2, 1–26
 +
# Brauer, Uwe; Karp, Lavi Local existence of solutions to the Euler-Poisson system, including densities without compact support. J. Differential Equations 264 (2018), no. 2, 755–785.
-
== Publicaciones aceptadas  ==
+
=== Year 2019 ===
 +
# Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
 +
# Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary", Discrete and Continuous Dynamical Systems 24 (8) pp: 4217-4246,  (2019)
 +
# Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
 +
# Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
 +
#  Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro. 'Interaction of localized large diffusion and boundary conditions', Journal of Differential Equations, Volume 267, Issue 5, p. 2687-2736 (2019).
-
# J.M. Arrieta, A. Rodríguez-Bernal, J. Rossi, "[http://www.mat.ucm.es/%7Ejarrieta/papers/trace-constant.pdf The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary]", ''Proceedings of the Royal Society of Edinburgh A'',<br/>
+
=== Year 2020 ===
-
# M. Bogoya, R. Ferreira, J.D. Rossi, “Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models” ''Proceedings of the American Mathematical Society''<br/>
+
# Robinson, J. C., & Rodríguez-Bernal, A., ''The heat flow in an optimal Fréchet space of unbounded initial data in \(\Bbb R^d\)'', J. Differential Equations, '''269(11)''', 10277–10321 (2020).  http://dx.doi.org/10.1016/j.jde.2020.07.017
-
# M. Bogoya,'' ''R. Ferreira y J. D. Rossi, “A nonlocal nonlinear diffusion equation with blowing up boundary conditions”,'' Journal of Mathematical Analysis and Applications''<br/>
+
# Pardo, R., & Sanjuán, A., ''Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth'', Electron. J. Differential Equations, '''()''', 114–17 (2020).
-
# A. Rodríguez-Bernal, A. Vidal-López, “Semiestable extremal ground states for nonlinear evolution equations in unbounded domains”, ''Journal of Mathematical Analysis and Applications''<br/>
+
# López-García, D., & Pardo, R., ''A mathematical model for the use of energy resources: a singular parabolic equation'', Math. Model. Anal., '''25(1)''', 88–109 (2020).  http://dx.doi.org/10.3846/mma.2020.9792
-
# A'' ''Jiménez Casas, “Invariant regions and global existence for a phase field model”, ''Discrete and Cont. Dynam. Systems. ''<br/>
+
# Jiménez-Casas, Á., & Rodríguez-Bernal, A., ''PDE problems with concentrating terms near the boundary'', Commun. Pure Appl. Anal., '''19(4)''', 2147–2195 (2020).  http://dx.doi.org/10.3934/cpaa.2020095
-
# A.Jiménez Casas, M. Castro Ponce, “Slow motion for a phase field model” ''Mathematical Methods in the Applied Science. ''<br/>
+
# Ferreira, R., & de Pablo, A., ''Grow-up for a quasilinear heat equation with a localized reaction'', J. Differential Equations, '''268(10)''', 6211–6229 (2020).  http://dx.doi.org/10.1016/j.jde.2019.11.033
 +
# Castro, A., Cossio, J., Herrón, S., Pardo, R., & Vélez, C., ''Infinitely many radial solutions for a sub-super critical $p$-Laplacian problem'', Ann. Mat. Pura Appl. (4), '''199(2)''', 737–766 (2020).  http://dx.doi.org/10.1007/s10231-019-00898-x
 +
# Brauer, U., & Karp, L., ''Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler-Poisson system'', J. Anal. Math., '''141(1)''', 113–163 (2020).  http://dx.doi.org/10.1007/s11854-020-0125-4
 +
# Arrieta, J. M., & Villanueva-Pesqueira, M., ''Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary'', Commun. Pure Appl. Anal., '''19(4)''', 1891–1914 (2020).  http://dx.doi.org/10.3934/cpaa.2020083
-
== Libros de investigación  ==
+
=== Year 2021 ===
-
# R. Dager, E. Zuazua, “Wave propagation, observation and control of 1-D flexible multi-structures”, Mathematiques et Applications 50, Springer-Berlag Berlin (2006), x+221 pp. ISBN: 978-3-540-27239-9; 3-540-27239-9
+
# Pereira, M. C., & Sastre-Gomez, S., ''Nonlocal and nonlinear evolution equations in perforated domains'', J. Math. Anal. Appl., '''495(2)''', 124729–21 (2021).  http://dx.doi.org/10.1016/j.jmaa.2020.124729
 +
# Mavinga, N., & Pardo, R., ''Equivalence between uniform \(L^p^*\) a priori bounds and uniform \(L^\infty\) a priori bounds for subcritical $p$-Laplacian equations'', Mediterr. J. Math., '''18(1)''', 13–24 (2021).  http://dx.doi.org/10.1007/s00009-020-01673-6
 +
# Ferreira, R., & de Pablo, A., ''Blow-up rates for a fractional heat equation'', Proc. Amer. Math. Soc., '''149(5)''', 2011–2018 (2021). http://dx.doi.org/10.1090/proc/15165
 +
# Clapp, M., Pardo, R., Pistoia, A., & Saldaña, A., ''A solution to a slightly subcritical elliptic problem with non-power nonlinearity'', J. Differential Equations, '''275()''', 418–446 (2021).  http://dx.doi.org/10.1016/j.jde.2020.11.030
 +
# Cardone, G., Perugia, C., & Villanueva Pesqueira, M., ''Asymptotic behavior of a Bingham flow in thin domains with rough boundary'', Integral Equations Operator Theory, '''93(3)''', 24–26 (2021).  http://dx.doi.org/10.1007/s00020-021-02643-7
 +
# Brauer, U., & Karp, L., ''The non-isentropic relativistic Euler system written in a symmetric hyperbolic form'', In  (Eds.), Anomalies in partial differential equations (pp. 63–76) (2021). : Springer, Cham.
 +
# Bezerra, F. D. M., Sastre-Gomez, S., & da Silva, S. H., ''Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition'', Appl. Anal., '''100(9)''', 1889–1904 (2021).  http://dx.doi.org/10.1080/00036811.2019.1671973
 +
# Arrieta J.M., J.C. Nakasato, M.C. Pereira, "The p-Laplacian equation in thin domains: The unfolding approach",  Journal of Differential Equations 274  (2021) pp: 1-34
 +
# Chhetri, N., Mavinga, M., & Pardo, R., ''Bifurcation from infinity with oscillatory nonlinearity for Neumann problem'', Electron. J. Differential Equations, '''Specialissue(1)''', 279–292 (2021).
-
== Libros docentes ==
+
=== Year 2022 ===
 +
# Rodríguez-Bernal, A., & Sastre-Gómez, S., ''Nonlinear nonlocal reaction-diffusion problem with local reaction'', Discrete Contin. Dyn. Syst., '''42(4)''', 1731–1765 (2022).  http://dx.doi.org/10.3934/dcds.2021170
 +
# Rodríguez-Bernal, A., ''Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces'', Nonlinear Anal., '''221()''', 112887–34 (2022).  http://dx.doi.org/10.1016/j.na.2022.112887
 +
# Ferreira, R., & de Pablo, A., ''A nonlinear diffusion equation with reaction localized in the half-line'', Math. Eng., '''4(3)''', 024–24 (2022).  http://dx.doi.org/10.3934/mine.2022024
 +
# Cholewa, J. W., & Rodriguez-Bernal, A., ''Sharp estimates for homogeneous semigroups in homogeneous spaces. Applications to PDEs and fractional diffusion in \(\Bbb R^N\)'', Commun. Contemp. Math., '''24(1)''', 2050070–56 (2022).  http://dx.doi.org/10.1142/S0219199720500704
 +
# Cholewa, J. W., & Rodriguez-Bernal, A., ''On some PDEs involving homogeneous operators. Spectral analysis, semigroups and Hardy inequalities'', J. Differential Equations, '''315()''', 1–56 (2022).  http://dx.doi.org/10.1016/j.jde.2022.01.029
 +
# Bandyopadhyay, S., Chhetri, M., Delgado, B. B., Mavinga, N., & Pardo, R., ''Maximal and minimal weak solutions for elliptic problems with nonlinearity on the boundary'', Electron. Res. Arch., '''30(6)''', 2121–2137 (2022).  http://dx.doi.org/10.3934/era.2022107
 +
 
 +
== Accepted for publication  ==
 +
# Brauer, U., & Karp, L., ''Global existence of a nonlinear wave equation arising from Nordström's theory of gravitation'' accepted for publication in Journal of Evolution equations, (preprint in the arXiv) https://arxiv.org/abs/1912.03643 (2019).
 +
 
 +
== Submitted for publication ==
 +
# J.M. Arrieta, A.N. Carvalho, E. Moreira, J. Valero, "Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem", Submitted
 +
 
 +
<!-- == Libros de investigación ==
 +
# R. Dager, E. Zuazua, "Wave propagation, observation and control of 1-D flexible multi-structures", Mathematiques et Applications 50, Springer-Berlag Berlin (2006), x+221 pp. ISBN: 978-3-540-27239-9; 3-540-27239-9 -->
 +
 
 +
== Books  ==
# S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007<br/>  
# S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007<br/>  
# R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).<br/>
# R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).<br/>
 +
# R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
 +
# Rodríguez del Río. Una nueva visión de la geometría, Felix Klein. Colección Genios de las Matemáticas, RBA, Barcelona, 2017. (ISBN:978-84-473-9067-0). Translated into French (ISBN: 978-84-473-9611-5) and into Italian (ISSN: 2531-890X)
 +
#Arrieta Algarra J.M., Ferreira de Pablo R, Pardo San Gil R, Rodríguez Bernal A, "Análisis Numérico de Ecuaciones Diferenciales".  Paraninfo (2020) (ISBN: 9788428344418)

Última versión de 12:25 20 jun 2022

Contenido


Publications in peer reviewed journals

Publications before 2017

Publications before 2017 Seminarios

Year 2017

  1. Ferreira, Raúl; Pérez-Llanos, Mayte A nonlocal operator breaking the Keller-Osserman condition. Adv. Nonlinear Stud. 17 (2017), no. 4, 715–725.
  2. Mavinga, Nsoki; Pardo, Rosa Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 649–671.
  3. Castro, Alfonso; Pardo, Rosa Infinitely many stability switches in a problem with sublinear oscillatory boundary conditions. J. Dynam. Differential Equations 29 (2017), no. 2, 485–499.
  4. Castro, Alfonso; Pardo, Rosa A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.
  5. Mavinga, N.; Pardo, R. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188
  6. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains. Integral Equations Operator Theory 89 (2017), no. 3, 377–408.
  7. Arrieta, José M.; Santamaría, Esperanza Distance of attractors of reaction-diffusion equations in thin domains. J. Differential Equations 263 (2017), no. 9, 5459–5506.
  8. Arrieta, José M.; Lamberti, Pier Domenico Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differential Equations 263 (2017), no. 7, 4222–4266.
  9. Arrieta, José M.; Villanueva-Pesqueira, Manuel Thin domains with non-smooth periodic oscillatory boundaries. J. Math. Anal. Appl. 446 (2017), no. 1, 130–164.
  10. Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. J. Abstr. Differ. Equ. Appl. 8 (2017), no. 2, 1–69.
  11. Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal Some general models of traffic flow in an isolated network. Math. Methods Appl. Sci. 40 (2017), no. 11, 3982–4000.
  12. Rodríguez-Bernal, Aníbal The heat equation with general periodic boundary conditions. Potential Anal. 46 (2017), no. 2, 295–321.
  13. Quesada, Carlos; Rodríguez-Bernal, Aníbal Second order linear parabolic equations in uniform spaces in RN. Rev. Mat. Complut. 30 (2017), no. 1, 63–78.
  14. Cholewa, Jan W.; Rodriguez-Bernal, Anibal Linear higher order parabolic problems in locally uniform Lebesgue's spaces. J. Math. Anal. Appl. 449 (2017), no. 1, 1–45.
  15. Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2669–2680.
  16. Jiménez-Casas, Ángela Asymptotic Behaviour of the Nonlinear Dynamical System Governing a Thermosyphon Model. Chaotic Modeling and Simulation (CMSIM).

Year 2018

  1. Ferreira, R.; de Pablo, A. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions. Rev. Mat. Complut. 31 (2018), no. 3, 805–832.
  2. Ferreira, Raul Blow-up for a semilinear heat equation with moving nonlinear reaction. Electron. J. Differential Equations 2018, Paper No. 32, 11 pp.
  3. Damascelli, Lucio; Pardo, Rosa A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl. 41 (2018), 475–496
  4. Arrieta, José M.; Santamaría, Esperanza C1,θ-estimates on the distance of inertial manifolds. Collect. Math. 69 (2018), no. 3, 315–336. 35K90 (35B42)
  5. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Boundary homogenization for a triharmonic intermediate problem. Math. Methods Appl. Sci. 41 (2018), no. 3, 979–985.
  6. Robinson, James C.; Rodríguez-Bernal, Aníbal Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Adv. Math. 334 (2018), 488–543.
  7. Jiménez-Casas, Ángela Metastable solutions for the thin-interface limit of a p-Laplacian phase field model. Math. Methods Appl. Sci. 41 (2018), no. 16, 6851–6865
  8. Jiménez-Casas, Ángela Asymptotic Behaviour of a Viscoelastic Thermosyphon Model.Chaotic Modeling and Simulation (CMSIM).
  9. Rodríguez Gomez, Alberto; Jiménez-Casas, Ángela Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform. American Journal of Engineering Research(AJER)
  10. Henry, David; Sastre-Gomez, Silvia Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity. Differential Integral Equations 31 (2018), no. 1-2, 1–26
  11. Brauer, Uwe; Karp, Lavi Local existence of solutions to the Euler-Poisson system, including densities without compact support. J. Differential Equations 264 (2018), no. 2, 755–785.

Year 2019

  1. Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
  2. Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary", Discrete and Continuous Dynamical Systems 24 (8) pp: 4217-4246, (2019)
  3. Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
  4. Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
  5. Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro. 'Interaction of localized large diffusion and boundary conditions', Journal of Differential Equations, Volume 267, Issue 5, p. 2687-2736 (2019).

Year 2020

  1. Robinson, J. C., & Rodríguez-Bernal, A., The heat flow in an optimal Fréchet space of unbounded initial data in \(\Bbb R^d\), J. Differential Equations, 269(11), 10277–10321 (2020). http://dx.doi.org/10.1016/j.jde.2020.07.017
  2. Pardo, R., & Sanjuán, A., Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth, Electron. J. Differential Equations, (), 114–17 (2020).
  3. López-García, D., & Pardo, R., A mathematical model for the use of energy resources: a singular parabolic equation, Math. Model. Anal., 25(1), 88–109 (2020). http://dx.doi.org/10.3846/mma.2020.9792
  4. Jiménez-Casas, Á., & Rodríguez-Bernal, A., PDE problems with concentrating terms near the boundary, Commun. Pure Appl. Anal., 19(4), 2147–2195 (2020). http://dx.doi.org/10.3934/cpaa.2020095
  5. Ferreira, R., & de Pablo, A., Grow-up for a quasilinear heat equation with a localized reaction, J. Differential Equations, 268(10), 6211–6229 (2020). http://dx.doi.org/10.1016/j.jde.2019.11.033
  6. Castro, A., Cossio, J., Herrón, S., Pardo, R., & Vélez, C., Infinitely many radial solutions for a sub-super critical $p$-Laplacian problem, Ann. Mat. Pura Appl. (4), 199(2), 737–766 (2020). http://dx.doi.org/10.1007/s10231-019-00898-x
  7. Brauer, U., & Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler-Poisson system, J. Anal. Math., 141(1), 113–163 (2020). http://dx.doi.org/10.1007/s11854-020-0125-4
  8. Arrieta, J. M., & Villanueva-Pesqueira, M., Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary, Commun. Pure Appl. Anal., 19(4), 1891–1914 (2020). http://dx.doi.org/10.3934/cpaa.2020083

Year 2021

  1. Pereira, M. C., & Sastre-Gomez, S., Nonlocal and nonlinear evolution equations in perforated domains, J. Math. Anal. Appl., 495(2), 124729–21 (2021). http://dx.doi.org/10.1016/j.jmaa.2020.124729
  2. Mavinga, N., & Pardo, R., Equivalence between uniform \(L^p^*\) a priori bounds and uniform \(L^\infty\) a priori bounds for subcritical $p$-Laplacian equations, Mediterr. J. Math., 18(1), 13–24 (2021). http://dx.doi.org/10.1007/s00009-020-01673-6
  3. Ferreira, R., & de Pablo, A., Blow-up rates for a fractional heat equation, Proc. Amer. Math. Soc., 149(5), 2011–2018 (2021). http://dx.doi.org/10.1090/proc/15165
  4. Clapp, M., Pardo, R., Pistoia, A., & Saldaña, A., A solution to a slightly subcritical elliptic problem with non-power nonlinearity, J. Differential Equations, 275(), 418–446 (2021). http://dx.doi.org/10.1016/j.jde.2020.11.030
  5. Cardone, G., Perugia, C., & Villanueva Pesqueira, M., Asymptotic behavior of a Bingham flow in thin domains with rough boundary, Integral Equations Operator Theory, 93(3), 24–26 (2021). http://dx.doi.org/10.1007/s00020-021-02643-7
  6. Brauer, U., & Karp, L., The non-isentropic relativistic Euler system written in a symmetric hyperbolic form, In (Eds.), Anomalies in partial differential equations (pp. 63–76) (2021). : Springer, Cham.
  7. Bezerra, F. D. M., Sastre-Gomez, S., & da Silva, S. H., Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition, Appl. Anal., 100(9), 1889–1904 (2021). http://dx.doi.org/10.1080/00036811.2019.1671973
  8. Arrieta J.M., J.C. Nakasato, M.C. Pereira, "The p-Laplacian equation in thin domains: The unfolding approach", Journal of Differential Equations 274 (2021) pp: 1-34
  9. Chhetri, N., Mavinga, M., & Pardo, R., Bifurcation from infinity with oscillatory nonlinearity for Neumann problem, Electron. J. Differential Equations, Specialissue(1), 279–292 (2021).

Year 2022

  1. Rodríguez-Bernal, A., & Sastre-Gómez, S., Nonlinear nonlocal reaction-diffusion problem with local reaction, Discrete Contin. Dyn. Syst., 42(4), 1731–1765 (2022). http://dx.doi.org/10.3934/dcds.2021170
  2. Rodríguez-Bernal, A., Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces, Nonlinear Anal., 221(), 112887–34 (2022). http://dx.doi.org/10.1016/j.na.2022.112887
  3. Ferreira, R., & de Pablo, A., A nonlinear diffusion equation with reaction localized in the half-line, Math. Eng., 4(3), 024–24 (2022). http://dx.doi.org/10.3934/mine.2022024
  4. Cholewa, J. W., & Rodriguez-Bernal, A., Sharp estimates for homogeneous semigroups in homogeneous spaces. Applications to PDEs and fractional diffusion in \(\Bbb R^N\), Commun. Contemp. Math., 24(1), 2050070–56 (2022). http://dx.doi.org/10.1142/S0219199720500704
  5. Cholewa, J. W., & Rodriguez-Bernal, A., On some PDEs involving homogeneous operators. Spectral analysis, semigroups and Hardy inequalities, J. Differential Equations, 315(), 1–56 (2022). http://dx.doi.org/10.1016/j.jde.2022.01.029
  6. Bandyopadhyay, S., Chhetri, M., Delgado, B. B., Mavinga, N., & Pardo, R., Maximal and minimal weak solutions for elliptic problems with nonlinearity on the boundary, Electron. Res. Arch., 30(6), 2121–2137 (2022). http://dx.doi.org/10.3934/era.2022107

Accepted for publication

  1. Brauer, U., & Karp, L., Global existence of a nonlinear wave equation arising from Nordström's theory of gravitation accepted for publication in Journal of Evolution equations, (preprint in the arXiv) https://arxiv.org/abs/1912.03643 (2019).

Submitted for publication

  1. J.M. Arrieta, A.N. Carvalho, E. Moreira, J. Valero, "Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem", Submitted


Books

  1. S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007
  2. R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).
  3. R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
  4. Rodríguez del Río. Una nueva visión de la geometría, Felix Klein. Colección Genios de las Matemáticas, RBA, Barcelona, 2017. (ISBN:978-84-473-9067-0). Translated into French (ISBN: 978-84-473-9611-5) and into Italian (ISSN: 2531-890X)
  5. Arrieta Algarra J.M., Ferreira de Pablo R, Pardo San Gil R, Rodríguez Bernal A, "Análisis Numérico de Ecuaciones Diferenciales". Paraninfo (2020) (ISBN: 9788428344418)