December 25, 2024, Wednesday, 359

Publications

De Cadedif

(Diferencias entre revisiones)
(Move publications before 2018 out to a seperate page)
(Add seminarios in order to generate a new page)
 
(14 ediciones intermedias no se muestran.)
Línea 2: Línea 2:
== Publications in peer reviewed journals  ==   
== Publications in peer reviewed journals  ==   
-
=== Publications before 2018===  
+
=== Publications before 2017===  
-
[[Publications before 2010]]
+
[[Publications before 2017]] [[Seminarios]]
 +
 
 +
===  Year 2017===
 +
# Ferreira, Raúl; Pérez-Llanos, Mayte A nonlocal operator breaking the Keller-Osserman condition. Adv. Nonlinear Stud. 17 (2017), no. 4, 715–725.
 +
# Mavinga, Nsoki; Pardo, Rosa Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 649–671.
 +
# Castro, Alfonso; Pardo, Rosa Infinitely many stability switches in a problem with sublinear oscillatory boundary conditions. J. Dynam. Differential Equations 29 (2017), no. 2, 485–499.
 +
# Castro, Alfonso; Pardo, Rosa A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.
 +
# Mavinga, N.; Pardo, R. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188
 +
# Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains. Integral Equations Operator Theory 89 (2017), no. 3, 377–408.
 +
# Arrieta, José M.; Santamaría, Esperanza Distance of attractors of reaction-diffusion equations in thin domains. J. Differential Equations 263 (2017), no. 9, 5459–5506.
 +
# Arrieta, José M.; Lamberti, Pier Domenico Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differential Equations 263 (2017), no. 7, 4222–4266.
 +
# Arrieta, José M.; Villanueva-Pesqueira, Manuel Thin domains with non-smooth periodic oscillatory boundaries. J. Math. Anal. Appl. 446 (2017), no. 1, 130–164.
 +
# Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. J. Abstr. Differ. Equ. Appl. 8 (2017), no. 2, 1–69.
 +
# Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal Some general models of traffic flow in an isolated network. Math. Methods Appl. Sci. 40 (2017), no. 11, 3982–4000.
 +
# Rodríguez-Bernal, Aníbal The heat equation with general periodic boundary conditions. Potential Anal. 46 (2017), no. 2, 295–321.
 +
# Quesada, Carlos; Rodríguez-Bernal, Aníbal Second order linear parabolic equations in uniform spaces in RN. Rev. Mat. Complut. 30 (2017), no. 1, 63–78.
 +
# Cholewa, Jan W.; Rodriguez-Bernal, Anibal Linear higher order parabolic problems in locally uniform Lebesgue's spaces. J. Math. Anal. Appl. 449 (2017), no. 1, 1–45.
 +
# Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2669–2680.
 +
# Jiménez-Casas, Ángela Asymptotic Behaviour of the Nonlinear Dynamical System Governing a Thermosyphon Model. Chaotic Modeling and Simulation (CMSIM).
=== Year 2018  ===
=== Year 2018  ===
Línea 19: Línea 37:
=== Year 2019 ===
=== Year 2019 ===
-
# Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
+
# Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
 +
# Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary", Discrete and Continuous Dynamical Systems 24 (8) pp: 4217-4246,  (2019)
# Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
# Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
# Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
# Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
Línea 29: Línea 48:
# López-García, D., & Pardo, R., ''A mathematical model for the use of energy resources: a singular parabolic equation'', Math. Model. Anal., '''25(1)''', 88–109 (2020).  http://dx.doi.org/10.3846/mma.2020.9792
# López-García, D., & Pardo, R., ''A mathematical model for the use of energy resources: a singular parabolic equation'', Math. Model. Anal., '''25(1)''', 88–109 (2020).  http://dx.doi.org/10.3846/mma.2020.9792
# Jiménez-Casas, Á., & Rodríguez-Bernal, A., ''PDE problems with concentrating terms near the boundary'', Commun. Pure Appl. Anal., '''19(4)''', 2147–2195 (2020).  http://dx.doi.org/10.3934/cpaa.2020095
# Jiménez-Casas, Á., & Rodríguez-Bernal, A., ''PDE problems with concentrating terms near the boundary'', Commun. Pure Appl. Anal., '''19(4)''', 2147–2195 (2020).  http://dx.doi.org/10.3934/cpaa.2020095
-
# Javadi, A., Arrieta, J., Tuval, I., & Polin, M., ''Photo-bioconvection: towards light control of flows in active suspensions'', Philos. Trans. Roy. Soc. A, '''378(2179)''', 20190523–17 (2020).  http://dx.doi.org/10.1098/rsta.2019.0523
 
# Ferreira, R., & de Pablo, A., ''Grow-up for a quasilinear heat equation with a localized reaction'', J. Differential Equations, '''268(10)''', 6211–6229 (2020).  http://dx.doi.org/10.1016/j.jde.2019.11.033
# Ferreira, R., & de Pablo, A., ''Grow-up for a quasilinear heat equation with a localized reaction'', J. Differential Equations, '''268(10)''', 6211–6229 (2020).  http://dx.doi.org/10.1016/j.jde.2019.11.033
# Castro, A., Cossio, J., Herrón, S., Pardo, R., & Vélez, C., ''Infinitely many radial solutions for a sub-super critical $p$-Laplacian problem'', Ann. Mat. Pura Appl. (4), '''199(2)''', 737–766 (2020).  http://dx.doi.org/10.1007/s10231-019-00898-x
# Castro, A., Cossio, J., Herrón, S., Pardo, R., & Vélez, C., ''Infinitely many radial solutions for a sub-super critical $p$-Laplacian problem'', Ann. Mat. Pura Appl. (4), '''199(2)''', 737–766 (2020).  http://dx.doi.org/10.1007/s10231-019-00898-x
# Brauer, U., & Karp, L., ''Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler-Poisson system'', J. Anal. Math., '''141(1)''', 113–163 (2020).  http://dx.doi.org/10.1007/s11854-020-0125-4
# Brauer, U., & Karp, L., ''Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler-Poisson system'', J. Anal. Math., '''141(1)''', 113–163 (2020).  http://dx.doi.org/10.1007/s11854-020-0125-4
# Arrieta, J. M., & Villanueva-Pesqueira, M., ''Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary'', Commun. Pure Appl. Anal., '''19(4)''', 1891–1914 (2020).  http://dx.doi.org/10.3934/cpaa.2020083
# Arrieta, J. M., & Villanueva-Pesqueira, M., ''Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary'', Commun. Pure Appl. Anal., '''19(4)''', 1891–1914 (2020).  http://dx.doi.org/10.3934/cpaa.2020083
-
# Arrieta, J., & Sevilla, A., ''On the flow separation mechanism in the inverse Leidenfrost regime'', J. Fluid Mech., '''897()''', 4–18 (2020).  http://dx.doi.org/10.1017/jfm.2020.380
+
 
-
# Arrieta, J., Jeanneret, R., Roig, P., & Tuval, I., ''On the fate of sinking diatoms: the transport of active buoyancy-regulating cells in the ocean'', Philos. Trans. Roy. Soc. A, '''378(2179)''', 20190529–12 (2020).  http://dx.doi.org/10.1098/rsta.2019.0529
+
-
# Arrieta, J., Cartwright, J. H. E., Gouillart, E., Piro, N., Piro, O., & Tuval, I., ''Geometric mixing'', Philos. Trans. Roy. Soc. A, '''378(2179)''', 20200168–20 (2020).  http://dx.doi.org/10.1098/rsta.2020.0168
+
=== Year 2021 ===
=== Year 2021 ===
# Pereira, M. C., & Sastre-Gomez, S., ''Nonlocal and nonlinear evolution equations in perforated domains'', J. Math. Anal. Appl., '''495(2)''', 124729–21 (2021).  http://dx.doi.org/10.1016/j.jmaa.2020.124729
# Pereira, M. C., & Sastre-Gomez, S., ''Nonlocal and nonlinear evolution equations in perforated domains'', J. Math. Anal. Appl., '''495(2)''', 124729–21 (2021).  http://dx.doi.org/10.1016/j.jmaa.2020.124729
Línea 45: Línea 61:
# Brauer, U., & Karp, L., ''The non-isentropic relativistic Euler system written in a symmetric hyperbolic form'', In  (Eds.), Anomalies in partial differential equations (pp. 63–76) (2021). : Springer, Cham.
# Brauer, U., & Karp, L., ''The non-isentropic relativistic Euler system written in a symmetric hyperbolic form'', In  (Eds.), Anomalies in partial differential equations (pp. 63–76) (2021). : Springer, Cham.
# Bezerra, F. D. M., Sastre-Gomez, S., & da Silva, S. H., ''Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition'', Appl. Anal., '''100(9)''', 1889–1904 (2021).  http://dx.doi.org/10.1080/00036811.2019.1671973
# Bezerra, F. D. M., Sastre-Gomez, S., & da Silva, S. H., ''Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition'', Appl. Anal., '''100(9)''', 1889–1904 (2021).  http://dx.doi.org/10.1080/00036811.2019.1671973
 +
# Arrieta J.M., J.C. Nakasato, M.C. Pereira, "The p-Laplacian equation in thin domains: The unfolding approach",  Journal of Differential Equations 274  (2021) pp: 1-34
 +
# Chhetri, N., Mavinga, M., & Pardo, R., ''Bifurcation from infinity with oscillatory nonlinearity for Neumann problem'', Electron. J. Differential Equations, '''Specialissue(1)''', 279–292 (2021).
=== Year 2022 ===
=== Year 2022 ===
Línea 55: Línea 73:
== Accepted for publication  ==
== Accepted for publication  ==
-
# Brauer, U.; Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler--Poisson system accepted for publication in Journal d'Analyse Mathematique (2019).
+
# Brauer, U., & Karp, L., ''Global existence of a nonlinear wave equation arising from Nordström's theory of gravitation'' accepted for publication in Journal of Evolution equations, (preprint in the arXiv) https://arxiv.org/abs/1912.03643 (2019).
-
# R. Ferreira y A. de Pablo, Grow-up for a quasilinear heat equation with a localized reaction, JDE
+
 
 +
== Submitted for publication ==
 +
# J.M. Arrieta, A.N. Carvalho, E. Moreira, J. Valero, "Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem", Submitted
<!-- == Libros de investigación  ==  
<!-- == Libros de investigación  ==  
Línea 66: Línea 86:
# R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
# R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
# Rodríguez del Río. Una nueva visión de la geometría, Felix Klein. Colección Genios de las Matemáticas, RBA, Barcelona, 2017. (ISBN:978-84-473-9067-0). Translated into French (ISBN: 978-84-473-9611-5) and into Italian (ISSN: 2531-890X)
# Rodríguez del Río. Una nueva visión de la geometría, Felix Klein. Colección Genios de las Matemáticas, RBA, Barcelona, 2017. (ISBN:978-84-473-9067-0). Translated into French (ISBN: 978-84-473-9611-5) and into Italian (ISSN: 2531-890X)
 +
#Arrieta Algarra J.M., Ferreira de Pablo R, Pardo San Gil R, Rodríguez Bernal A, "Análisis Numérico de Ecuaciones Diferenciales".  Paraninfo (2020) (ISBN: 9788428344418)

Última versión de 12:25 20 jun 2022

Contenido


Publications in peer reviewed journals

Publications before 2017

Publications before 2017 Seminarios

Year 2017

  1. Ferreira, Raúl; Pérez-Llanos, Mayte A nonlocal operator breaking the Keller-Osserman condition. Adv. Nonlinear Stud. 17 (2017), no. 4, 715–725.
  2. Mavinga, Nsoki; Pardo, Rosa Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 649–671.
  3. Castro, Alfonso; Pardo, Rosa Infinitely many stability switches in a problem with sublinear oscillatory boundary conditions. J. Dynam. Differential Equations 29 (2017), no. 2, 485–499.
  4. Castro, Alfonso; Pardo, Rosa A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 3, 783–790.
  5. Mavinga, N.; Pardo, R. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449 (2017), no. 2, 1172–1188
  6. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains. Integral Equations Operator Theory 89 (2017), no. 3, 377–408.
  7. Arrieta, José M.; Santamaría, Esperanza Distance of attractors of reaction-diffusion equations in thin domains. J. Differential Equations 263 (2017), no. 9, 5459–5506.
  8. Arrieta, José M.; Lamberti, Pier Domenico Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems. J. Differential Equations 263 (2017), no. 7, 4222–4266.
  9. Arrieta, José M.; Villanueva-Pesqueira, Manuel Thin domains with non-smooth periodic oscillatory boundaries. J. Math. Anal. Appl. 446 (2017), no. 1, 130–164.
  10. Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. J. Abstr. Differ. Equ. Appl. 8 (2017), no. 2, 1–69.
  11. Jiménez-Casas, Ángela; Rodríguez-Bernal, Aníbal Some general models of traffic flow in an isolated network. Math. Methods Appl. Sci. 40 (2017), no. 11, 3982–4000.
  12. Rodríguez-Bernal, Aníbal The heat equation with general periodic boundary conditions. Potential Anal. 46 (2017), no. 2, 295–321.
  13. Quesada, Carlos; Rodríguez-Bernal, Aníbal Second order linear parabolic equations in uniform spaces in RN. Rev. Mat. Complut. 30 (2017), no. 1, 63–78.
  14. Cholewa, Jan W.; Rodriguez-Bernal, Anibal Linear higher order parabolic problems in locally uniform Lebesgue's spaces. J. Math. Anal. Appl. 449 (2017), no. 1, 1–45.
  15. Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2669–2680.
  16. Jiménez-Casas, Ángela Asymptotic Behaviour of the Nonlinear Dynamical System Governing a Thermosyphon Model. Chaotic Modeling and Simulation (CMSIM).

Year 2018

  1. Ferreira, R.; de Pablo, A. Grow-up for a quasilinear heat equation with a localized reaction in higher dimensions. Rev. Mat. Complut. 31 (2018), no. 3, 805–832.
  2. Ferreira, Raul Blow-up for a semilinear heat equation with moving nonlinear reaction. Electron. J. Differential Equations 2018, Paper No. 32, 11 pp.
  3. Damascelli, Lucio; Pardo, Rosa A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl. 41 (2018), 475–496
  4. Arrieta, José M.; Santamaría, Esperanza C1,θ-estimates on the distance of inertial manifolds. Collect. Math. 69 (2018), no. 3, 315–336. 35K90 (35B42)
  5. Arrieta, José M.; Ferraresso, Francesco; Lamberti, Pier Domenico Boundary homogenization for a triharmonic intermediate problem. Math. Methods Appl. Sci. 41 (2018), no. 3, 979–985.
  6. Robinson, James C.; Rodríguez-Bernal, Aníbal Optimal existence classes and nonlinear-like dynamics in the linear heat equation in Rd. Adv. Math. 334 (2018), 488–543.
  7. Jiménez-Casas, Ángela Metastable solutions for the thin-interface limit of a p-Laplacian phase field model. Math. Methods Appl. Sci. 41 (2018), no. 16, 6851–6865
  8. Jiménez-Casas, Ángela Asymptotic Behaviour of a Viscoelastic Thermosyphon Model.Chaotic Modeling and Simulation (CMSIM).
  9. Rodríguez Gomez, Alberto; Jiménez-Casas, Ángela Analysis of the ECG Signal Recognizing the QRS Complex and P and T Waves, Using Wavelet Transform. American Journal of Engineering Research(AJER)
  10. Henry, David; Sastre-Gomez, Silvia Steady periodic water waves bifurcating for fixed-depth rotational flows with discontinuous vorticity. Differential Integral Equations 31 (2018), no. 1-2, 1–26
  11. Brauer, Uwe; Karp, Lavi Local existence of solutions to the Euler-Poisson system, including densities without compact support. J. Differential Equations 264 (2018), no. 2, 755–785.

Year 2019

  1. Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Comput. Math. Appl. 77 (2019), no. 2, 536–554
  2. Arrieta, José M.; Nogueira, Ariadne; Pereira, Marcone C.; "Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary", Discrete and Continuous Dynamical Systems 24 (8) pp: 4217-4246, (2019)
  3. Bezerra, F. D. M., and Sastre-Gomez S., and da Silvia, S. H. Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition. Applicable Analysis, v. 10, p. 1-16, 2019.
  4. Ferreira, Raúl Blow-up for a semilinear non-local diffusion system. Nonlinear Anal. 189, 12 pp.
  5. Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro. 'Interaction of localized large diffusion and boundary conditions', Journal of Differential Equations, Volume 267, Issue 5, p. 2687-2736 (2019).

Year 2020

  1. Robinson, J. C., & Rodríguez-Bernal, A., The heat flow in an optimal Fréchet space of unbounded initial data in \(\Bbb R^d\), J. Differential Equations, 269(11), 10277–10321 (2020). http://dx.doi.org/10.1016/j.jde.2020.07.017
  2. Pardo, R., & Sanjuán, A., Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth, Electron. J. Differential Equations, (), 114–17 (2020).
  3. López-García, D., & Pardo, R., A mathematical model for the use of energy resources: a singular parabolic equation, Math. Model. Anal., 25(1), 88–109 (2020). http://dx.doi.org/10.3846/mma.2020.9792
  4. Jiménez-Casas, Á., & Rodríguez-Bernal, A., PDE problems with concentrating terms near the boundary, Commun. Pure Appl. Anal., 19(4), 2147–2195 (2020). http://dx.doi.org/10.3934/cpaa.2020095
  5. Ferreira, R., & de Pablo, A., Grow-up for a quasilinear heat equation with a localized reaction, J. Differential Equations, 268(10), 6211–6229 (2020). http://dx.doi.org/10.1016/j.jde.2019.11.033
  6. Castro, A., Cossio, J., Herrón, S., Pardo, R., & Vélez, C., Infinitely many radial solutions for a sub-super critical $p$-Laplacian problem, Ann. Mat. Pura Appl. (4), 199(2), 737–766 (2020). http://dx.doi.org/10.1007/s10231-019-00898-x
  7. Brauer, U., & Karp, L., Continuity of the flow map for symmetric hyperbolic systems and its application to the Euler-Poisson system, J. Anal. Math., 141(1), 113–163 (2020). http://dx.doi.org/10.1007/s11854-020-0125-4
  8. Arrieta, J. M., & Villanueva-Pesqueira, M., Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary, Commun. Pure Appl. Anal., 19(4), 1891–1914 (2020). http://dx.doi.org/10.3934/cpaa.2020083

Year 2021

  1. Pereira, M. C., & Sastre-Gomez, S., Nonlocal and nonlinear evolution equations in perforated domains, J. Math. Anal. Appl., 495(2), 124729–21 (2021). http://dx.doi.org/10.1016/j.jmaa.2020.124729
  2. Mavinga, N., & Pardo, R., Equivalence between uniform \(L^p^*\) a priori bounds and uniform \(L^\infty\) a priori bounds for subcritical $p$-Laplacian equations, Mediterr. J. Math., 18(1), 13–24 (2021). http://dx.doi.org/10.1007/s00009-020-01673-6
  3. Ferreira, R., & de Pablo, A., Blow-up rates for a fractional heat equation, Proc. Amer. Math. Soc., 149(5), 2011–2018 (2021). http://dx.doi.org/10.1090/proc/15165
  4. Clapp, M., Pardo, R., Pistoia, A., & Saldaña, A., A solution to a slightly subcritical elliptic problem with non-power nonlinearity, J. Differential Equations, 275(), 418–446 (2021). http://dx.doi.org/10.1016/j.jde.2020.11.030
  5. Cardone, G., Perugia, C., & Villanueva Pesqueira, M., Asymptotic behavior of a Bingham flow in thin domains with rough boundary, Integral Equations Operator Theory, 93(3), 24–26 (2021). http://dx.doi.org/10.1007/s00020-021-02643-7
  6. Brauer, U., & Karp, L., The non-isentropic relativistic Euler system written in a symmetric hyperbolic form, In (Eds.), Anomalies in partial differential equations (pp. 63–76) (2021). : Springer, Cham.
  7. Bezerra, F. D. M., Sastre-Gomez, S., & da Silva, S. H., Upper semicontinuity for a class of nonlocal evolution equations with Neumann condition, Appl. Anal., 100(9), 1889–1904 (2021). http://dx.doi.org/10.1080/00036811.2019.1671973
  8. Arrieta J.M., J.C. Nakasato, M.C. Pereira, "The p-Laplacian equation in thin domains: The unfolding approach", Journal of Differential Equations 274 (2021) pp: 1-34
  9. Chhetri, N., Mavinga, M., & Pardo, R., Bifurcation from infinity with oscillatory nonlinearity for Neumann problem, Electron. J. Differential Equations, Specialissue(1), 279–292 (2021).

Year 2022

  1. Rodríguez-Bernal, A., & Sastre-Gómez, S., Nonlinear nonlocal reaction-diffusion problem with local reaction, Discrete Contin. Dyn. Syst., 42(4), 1731–1765 (2022). http://dx.doi.org/10.3934/dcds.2021170
  2. Rodríguez-Bernal, A., Principal eigenvalue, maximum principles and linear stability for nonlocal diffusion equations in metric measure spaces, Nonlinear Anal., 221(), 112887–34 (2022). http://dx.doi.org/10.1016/j.na.2022.112887
  3. Ferreira, R., & de Pablo, A., A nonlinear diffusion equation with reaction localized in the half-line, Math. Eng., 4(3), 024–24 (2022). http://dx.doi.org/10.3934/mine.2022024
  4. Cholewa, J. W., & Rodriguez-Bernal, A., Sharp estimates for homogeneous semigroups in homogeneous spaces. Applications to PDEs and fractional diffusion in \(\Bbb R^N\), Commun. Contemp. Math., 24(1), 2050070–56 (2022). http://dx.doi.org/10.1142/S0219199720500704
  5. Cholewa, J. W., & Rodriguez-Bernal, A., On some PDEs involving homogeneous operators. Spectral analysis, semigroups and Hardy inequalities, J. Differential Equations, 315(), 1–56 (2022). http://dx.doi.org/10.1016/j.jde.2022.01.029
  6. Bandyopadhyay, S., Chhetri, M., Delgado, B. B., Mavinga, N., & Pardo, R., Maximal and minimal weak solutions for elliptic problems with nonlinearity on the boundary, Electron. Res. Arch., 30(6), 2121–2137 (2022). http://dx.doi.org/10.3934/era.2022107

Accepted for publication

  1. Brauer, U., & Karp, L., Global existence of a nonlinear wave equation arising from Nordström's theory of gravitation accepted for publication in Journal of Evolution equations, (preprint in the arXiv) https://arxiv.org/abs/1912.03643 (2019).

Submitted for publication

  1. J.M. Arrieta, A.N. Carvalho, E. Moreira, J. Valero, "Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem", Submitted


Books

  1. S. Rodríguez Salazar, “Matemáticas para estudiantes de químicas”, Editorial Síntesis. 2007
  2. R. Rodríguez, E. Zuazua, “De la aritmética al análisis. Historia y desarrollo reciente en matemáticas” Ministerio de Educación y Ciencia. (ISBN: 84-369-3845-3).
  3. R. Ferreira y S. Rodríguez, Ecuaciones Diferenciales y Cálculo Vectorial, editorial Garceta
  4. Rodríguez del Río. Una nueva visión de la geometría, Felix Klein. Colección Genios de las Matemáticas, RBA, Barcelona, 2017. (ISBN:978-84-473-9067-0). Translated into French (ISBN: 978-84-473-9611-5) and into Italian (ISSN: 2531-890X)
  5. Arrieta Algarra J.M., Ferreira de Pablo R, Pardo San Gil R, Rodríguez Bernal A, "Análisis Numérico de Ecuaciones Diferenciales". Paraninfo (2020) (ISBN: 9788428344418)