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Madrid 28040, Spain

E-mail: angela.stevens@uni-hd.de and velazque@mat.ucm.es

Received 15 September 2008, in final form 24 September 2008
Published 13 November 2008
Online at stacks.iop.org/Non/21/T283

Abstract
In this paper we give a short introduction to open problems and recent studies
of classes of partial differential equations, which—in contrast to reaction–
diffusion systems—describe phenomena with local interactions. Partial
differential equations coupled with ordinary differential equations, models of
transport type and hyperbolic systems are discussed with respect to their pattern
forming behaviour.

Mathematics Subject Classification: 35K55, 45K05, 35L60, 35B10, 35B40,
82C70, 92C15, 92C17

1. Introduction

In the following we summarize some models of partial differential equations, which are
characterized by the presence of at least one non-diffusible ‘active agent’. We are interested in
the pattern forming behaviour and the long time dynamics of such systems. From the applied
point of view we will focus on biological examples and models here, although the mathematical
questions we address also arise in other scientific contexts. From the mathematical point of
view it turns out that the solutions of these models show peculiar patterns in comparison with
mathematical models, where most agents in the system are assumed to diffuse. This latter type
of systems and equations has been studied in mathematical biology in great detail, especially
in the context of Turing type instabilities. The analysis of the ‘more local’ models requires
different mathematical methods and techniques.

2. Reaction–diffusion equations coupled to ODEs

One example for a model of an interacting cell system whose continuous reaction–diffusion
limit is given by a reaction–diffusion equation coupled to an ODE is the model for loss of
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contact inhibition of malignant cells within a healthy tissue, proposed and analysed in [3, 17].
Two types of cells, malignant and healthy ones, move and divide on a two-dimensional lattice.
The malignant cells, denoted by U , are supposed to be more motile and thus diffuse on the
lattice much faster than the healthy cells, denoted by V . In the case of cell–cell contact the
healthy cells are inhibited to grow, whereas the malignant cells can still grow in such a situation.
Thus the malignant cells are able grow on top of other cells, i.e. the birth rate of U is assumed
to be constant. The healthy V cells can only grow on empty sites. The death rate for all cells of
type U and of type V increases with local overcrowding, since they are assumed to compete,
e.g. for oxygen. In [3, 17] the following system of partial differential equations was rigorously
derived for the macroscopic cell densities u, v by means of a hydrodynamic limit:

ut = �u + u(β − D(u) − D′(u)v),

vt = v(β(1 − v) exp(−u) − D(u)).

Here D(u) = ∑∞
k=0 γ (k+1) uk

k! e−u and γ relate to the death processes in the original interacting
stochastic many particle models and β relates to the birth rate (cf [17]). The diffusion of the
V cells vanishes in this limit.

An interesting question for this limiting system is, what are the qualitative dynamics of
the populations of malignant and of healthy cells, i.e. under what conditions does one of the
cell populations spread faster than the other within the heterogeneous tissue. A first result was
given in [17]. Related questions were pursued in [8].

3. Drift–diffusion models coupled to an ODE

A by now classical drift–diffusion model, respectively, cross-diffusion model in mathematical
biology is the Keller–Segel (KS) model for chemotaxis [14]. Cells exhibiting chemotaxis
move towards regions of higher concentrations of an attractive chemical signal. Well-known
examples are the chemotactic behaviour of Escherichia coli and of the slime mould amoebae
Dictyostelium discoideum.

Two particularly interesting limiting cases of the KS model exist. First, the case where the
diffusion of the chemotactic species is much slower than the diffusion of the chemo-attractant.
In suitable non-dimensional units the model then reduces to a parabolic–elliptic system:

ut = �u − ∇(u∇v), x ∈ � ∈ R
N, t > 0, (1)

0 = �v + u − c x ∈ �, t > 0. (2)

Here u = u(t, x) denotes the concentration of the chemotactic organism and v = v(t, x)

denotes the concentration of the chemo-attractant. This system is usually stated with zero-flux
boundary conditions for a bounded domain � and initial data u(0, x) = u0(x). A compatibility
condition which allows to solve (2) with zero-flux conditions is given by c = 1

|�|
∫
�

u0 dx.
The mathematical properties of system (1) and (2) have been studied extensively, in

particular steady states and conditions for initial data which ensure the global existence of
solutions or blow-up in finite time. The number of papers on the KS model and related
systems is rather large by now. A summary of the results on this topic in published papers and
preprints until 2002 can be found in [9, 10].

So far a second interesting limiting case for the KS type of models has been studied much
less. Instead of a diffusible chemo-attractant a kind of non-diffusible attractive memory is
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assumed to be given:

ut = �u − ∇(u∇g(z)), x ∈ � ⊂ R
N, t > 0, (3)

zt = f (u, z). (4)

For specific positive g and negative f chemotactic travelling bands were already discussed
in [15], see also [11] and further references therein. In [23] and [2] the existence of global
solutions for such models was proved.

Mathematically the situation becomes more involved for positive f . A specific example
for system (3) and (4) with g(z) = θ log(z) for θ > 0 and f (u, z) = u was introduced
in [18, 24]. The idea for this model originated from a self-attracting reinforced random walk
of a single particle, the derivation of conditions for recurrence and transience and the biological
phenomenon of slime trail following and aggregation of myxobacteria (cf the review paper [19]
for reinforced random walks and the book [4] for the self-organization of myxobacteria).

The PDE model (3) and (4) cannot provide an accurate description of the dynamics of
the self-attracting reinforced random walk of a single particle in any nontrivial continuum
limit. However, it seems likely that for a many particle model this PDE–ODE system results
as a limit under suitable conditions on the number of particles and the law of reinforcement.
Nevertheless, the rigorous derivation of (3) and (4) starting from a stochastic many particle
system has not been obtained so far. In case equation (4) also allows diffusion, a rigorous
derivation of the system from a moderately interacting stochastic many particle system has
been obtained in [25].

For f (u, z) = u · z and g(z) = log(z) blow-up in finite time in one space dimension
for specific initial data was proved in [16]. These functions give rise to a much stronger
tendency for blow-up of solutions than the case f (u, z) = u and g(z) = θ log(z) for any
θ > 0. Therefore, the asymptotic behaviour of the solutions of (3) and (4) for f (u, z) = u

and g(z) = θ log(z) for different space dimensions has recently been studied in [26] in more
detail. Results include blow-up in finite time, blow-up in infinite time and convergence of
solutions to zero in a self-similar way. Most of these solutions exhibit involved asymptotics,
which require a careful analysis of several boundary layers. As a general rule larger values
of θ and smaller values of the spatial dimension N yield a stronger tendency for blow-up.
As a consequence, many critical parameter values occur for which the solutions change their
asymptotic behaviour.

The asymptotics given in [26] do not yield blow-up for θ < 1 in any space dimension.
Given the form of equation (3) one can expect an increasing strength of the chemotactic
attraction for increasing θ . The dependence of the behaviour of (3) and (4) on the space
dimension N is not so obvious and requires a more detailed analysis than what is shown so
far in [26]. An intuitive explanation for the dependence of blow-up on the spatial dimension
is as follows: for smaller dimensions the motion of a Brownian particle covers space more
densely than for larger dimensions. As a consequence, the modification of the environment
(given by v) is smaller for larger dimensions and therefore the tendency for blow-up is weaker.
Blow-up results from steepening gradients in the attractive environment v. In the case of a
diffusing chemical environment v the result is different. Then the tendency for blow-up of
solutions is stronger in larger dimensions.

Due to the hyperbolic character of equation (4) the asymptotics of the solutions of (3)
and (4) depend very sensitively on the initial data in some cases. The strongest dependences
occur for N = 1, θ = 1. This has been rigorously proved in [13]. Also the concentration of
mass to a Dirac mass in infinite time has been shown for the case N = 1, 1 < θ < 3.

It would be interesting to obtain rigorous proofs for various other asymptotic results
derived in [26] and to understand them in a more general context.
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4. Models of transport type

Models of transport type are extensively studied in the context of age and stage structured
population dynamics, especially in epidemiology. Usually the dynamics of a distribution
function f = f (t, x, θ) is described with respect to time, space and a set of internal variables
or age/stage parameters θ . These variables can include magnitudes such as cell orientation
or shape, the state within the cell cycle, age with respect to a disease state and magnitudes
for internal cell states, such as chemical concentrations. Depending on the setting, f can be
understood as a cell density or a probability distribution. Examples are given in [27] and [20].
Further classical references are cited in these books.

An example for a transport model analysed in mathematical biology is

(∂tf + v(θ) · ∇xf )(t, x, θ) =
∫

[−1,1]
[K(θ̂, θ; f )f (t, x, θ̂) − K(θ, θ̂; f )f (t, x, θ)] dθ̂ .

(5)

The left-hand side of this equation describes cell motion with speed v(θ), which may depend
on the set of internal variables θ . The right-hand side describes the transition between different
cell states. More generally derivatives with respect to θ could also be included and further
dependences considered. Equations such as (5) have been used to study reorientation of cells
due to interaction with themselves and with external cues. In the context of chemotaxis (cf [1])
the kernel K depends on an external attractive chemical signal instead of (or additionally to)
f itself. For alignment of small stiff filaments and elongated cells equation (5) was discussed
in [5] and [7], but cell motion in space was omitted.

The fact that the changes in the internal variables take place locally, i.e. in regions of a size
which is smaller than the characteristic length scale used to define the distribution f (t, x, v),
justifies the discussion of equation (5) together with the other type of models presented in this
paper.

4.1. Pattern formation in transport models with internal variables

An interesting feature of models of type (5) is that they can generate patterns with a
characteristic wavelength. This is well known for reaction–diffusion systems and was
discovered in the classical work by Turing [28]. The existence of pattern forming instabilities
for (5) has been proved in [21] for a discrete set of state variables. The linearization of equations
of type (5) can exhibit periodic oscillations with a characteristic wavelength, if at least three
state variables are present. It has also been proved that the formation of nontrivial patterns
is possible with at least four internal variables, if the resulting system is symmetric under
reflections. The basic model in this case is

(u1)t + α(u1)x = S2(u1, u2, v1, v2) − T1(u1, u2, v1, v2),

(u2)t + β(u2)x = T1(u1, u2, v1, v2) − T2(u1, u2, v1, v2),

(v1)t − α(v1)x = T2(u1, u2, v1, v2) − S1(u1, u2, v1, v2),

(v2)t − β(v2)x = S1(u1, u2, v1, v2) − S2(u1, u2, v1, v2).

Under suitable conditions on α, β, T1, T2 and S1, S2 the solutions of the linearized system show
patterns with a defined wavelength.

These results can be interpreted in analogy to Turing’s results. Nontrivial patterns are
possible in reaction–diffusion systems only if they are complex enough. Linear systems with
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one diffusing chemical cannot generate patterns, but—as Turing proved—this is possible if at
least two different chemicals with different diffusion coefficients are involved. In the case of
systems of type (5) the patterns are generated by a nontrivial coupling of the cell motility with
the dynamics of the internal cell variables.

The models discussed in [21] are motivated by the peculiar counter migrating periodic
wave-like patterns—or ripples—in cultures of myxobacteria (cf [4]). After alignment these
bacteria move in a nearly one-dimensional manner, basically in two directions, and reverse upon
contact after the exchange of a signal. It was proved in [21] that models with ‘reasonable’
functional dependences can reproduce the experimentally described ripples, if they contain
three internal cell states for the cells moving in the same of the two possible directions, which
means overall six equations for the full system. This result indicates that a minimal amount of
complexity is required for such a system with local interaction to create the requested patterns.
Of course more research is needed to clarify if and how the observed biological phenomenon
relates to the models suggestions, i.e. what could be the mechanics of the different cell states.
An additional test for the model is the experimental observation that the wavelength of the
periodic pattern increases and finally disappears, if a specific type of mutants is added to the
culture, namely, bacteria which are unable to submit the signal for reversal to their neighbours
which are in direct contact with themselves. The suggested model together with the natural
extension for the mutant population perfectly reflects this qualitative feature mathematically
(cf [21]).

In [21] mathematical methods have been developed to study classes of equations of type
(5) which generate patterns. A more systematic classification of such models is still open to do.
It would also be interesting to study analogous effects for nonlinear problems. The analysis of
pattern formation for nonlinear systems has been done for reaction–diffusion systems. Such
results are lacking so far for nonlinear versions of the equations discussed in [21]. This seems
interesting to analyse from the mathematical point of view.

4.2. Alignment in transport models

Models of type (5) were also discussed in [5] to study alignment of small, stiff filaments or
elongated bacteria, namely

∂tf (t, θ) =
∫

[−1,1]
[K(θ̂, θ; f )f (t, θ̂ ) − K(θ, θ̂; f )f (t, θ)] dθ̂ (6)

with

K(θ, θ̂; f ) =
∫

[−1,1]
Gσ(θ̂ − Mw(θ))f (t, w) dw,

where Gσ is the standard periodic Gaussian

Gσ(u) = (4πσ)−1/2
∑
m∈Z

exp(−(u + 2m)2/(4σ)), (7)

Mw(θ) = θ + V (w − θ) is the optimal reorientation due to interaction of bundles of filaments
with those of orientation w, and V is the orientational angle. Here σ = 0 is a limiting case,
where Gσ is the Dirac mass. Uniform convergence of solutions for σ → 0 was established
in [6].

In [5] and [7] involved bifurcation results for steady state solutions of (6) were obtained.
In [12] and [22] the full equation was rigorously analysed. In [12] the model for deterministic
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alignment mechanisms, namely, σ = 0, was studied. It was rigorously proved that for a
specific class of initial data the solutions of the equation do align the filament bundles along
two opposite directions. Nevertheless, the amount of mass aligning for each of the opposite
directions turned out to be arbitrary. This is due to the deterministic character of the model.
In [22] it was proved that in the presence of stochastic effects on the alignment mechanism,
namely, σ > 0, mass selection results and only two values for the ratio between the masses
aligning in opposite directions are possible. Either identical masses are aligned in the two
directions, or most of the mass is concentrated in only one direction. Which of the two cases
occurs depends on the specific form of the interaction given by V , as discussed in [22].

The results in [12] and [22] are basically local results and have been derived either for
specific initial distributions or under suitable smallness conditions for the intensity of the
stochasticity, the strength of the interactions for alignment, and others. It would be interesting
to clarify the necessity of these restrictions.

The analysis in [5, 7, 12, 22] is restricted to spatially homogeneous situations. How
additional spatial dependences do affect the system is largely open.

References

[1] Alt W 1981 Singular perturbation of differential integral equations describing biased random walks J. Reine
Angew. Math. 322 15–41

[2] Corrias L, Perthame B and Zaag H 2004 Global solutions of some chemotaxis and angiogenesis systems in high
space dimensions Milan J. Math. 72 1–28

[3] De Masi A, Luckhaus S and Presutti E 2007 Two scales hydrodynamic limit for a model of malignant tumour
cells Ann. Inst. H. Poincaré Probab. Statist. 43 257–97
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