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Classical Mechanics

Let (M, g) be a complete Riemannian manifold.

The position x (t) and momentum ξ (t) of a free Newtonian
particle in M, vary according to:{

ẋ = ∂ξH (x , ξ) ,

ξ̇ = −∂xH (x , ξ) ;

where H, defined on T ∗M, is given in coordinates by:

H (x , ξ) :=
1

2

d∑
i ,j=1

g ij (x) ξiξj + V (x);

with
(
g ij
)

:= (gij)
−1.

When V = 0, this defines the geodesic flow φt of (M, g) on
T ∗M.
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The Liouville formulation

The Hamiltonian system of O.D.E.’s may also be written as a
P.D.E. for the density of particles µt (x , ξ) at time t:

∂tµt +
1

2
div (µtXH) = 0,

once an initial density µt |t=0 = µ0 on T ∗M is prescribed.

Initial state (x0, ξ0) ∈ T ∗M ↔ initial density µ0 (x , ξ) = δx0 (x) δξ0 (ξ).

The solution µt is then

µt (x , ξ) = δx(t) (x) δξ(t) (ξ) ,

where (x (t) , ξ (t)) is the corresponding classical trajectory.
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Classical Mechanics

A quantum free particle moves according to Schrödinger’s
equation:

ih∂tu (t, x)+
h2

2
∆xu (t, x)−V (x)u (t, x) = 0 for (t, x) ∈ R×M.

Now, ∆x is the Laplace-Beltrami operator associated to g . In
coordinates:

∆xu (x) =
1

ρ (x)

d∑
i ,j=1

∂xiρ (x) g ij (x) ∂xj u (x) ,

with ρ (x) := (det g (x))1/2 .

Interpretation

|u (t, x)|2 is the position probability density;

“ |û (t, ξ)|2 ” is the momentum probability density.
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Solutions to the Schrödinger equation

Suppose ∆− V has discrete spectrum (e.g., if M is compact or
V (x) →

x→∞
+∞).

Then there exists a sequence of eigenvalues 0 ≤ λj ↗ +∞ and an
orthonomal basis in L2 (M) consisting of eigenfunctions:

−h2

2
∆ψλj

(x) + V (x)ψλj
= λjψλj

, x ∈ M.

The solutions to the Schrödinger equation are of the form:

u (t, x) =
∑
λj

e−itλj û (λj)ψλj
(x) .
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The Classical-Quantum correspondence I

Heuristically

As the characteristic oscillation frequencies 1/h2 of a solution
u (t, x) to the Schrödinger equation tend to infinity, the behavior
of |u (t, x)|2 is determined by classical mechanics.
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The Classical-Quantum correspondence II

A little bit more precise

If (uh) is an h-oscillatory sequence:

uh (t, x) =
∑

r/h2≤λj≤R/h2

e−itλj ûh (λj)ψλj
(x) ,

for some 0 < r < R (this means that (uh) oscillates at frequencies
∼ 1/h2) then the limit of

|uh (t, x) |2, as h → 0+,

propagates according to a law related to the classical dynamics
(if V = 0, this is the geodesic flow of (M, g)).
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Realizations of the C-Q

Times t ∼ 1 - The Semiclassical Limit

|uh(t, x)|2 propagates following classical mechanics.

The geometry does not play a rôle.

Uniform in time - Eigenfunction concentration

If uh(0, ·) = ψλ is an eigenfunction, then the solution of the
evolution problem satisfies

|e itλψλ|2 = |ψλ|2 .

The limit λ = 1/h2 →∞ depends on fine dynamical properties of
the geodesic flow.
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Realizations of the C-Q

Times t ∼ 1/h - Long-time semiclassical limit

This is the intermediate regime we shall be interested in.
It requires an analysis of the full propagator for long times:

|uh(t/h, x)|2.

One expects that the dispersive effects associated to the
Schrödinger equation become effective.
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Classical approach

Consider
uh (t, x) := e iht∆/2u0

h,

which solves the semiclassical Schrödinger equation:

ih∂tuh (t, x) +
h2

2
∆uh (t, x) = 0.

Consider initial data of the form:

u0
h (x) := ρ0 (x) e iS0(x)/h,

The W.K.B. method constructs an approximate solution with
this initial data.
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The Ansatz

Look for an approximate solution of the form

vh (t, x) := ρ (t, x) e iS(t,x)/h,

Then,

ih∂tvh +
h2

2
∆vh = −ρ

(
∂tS +

1

2
|∇S |2

)
e iS(t,x)/h

+ih

(
∂tρ+∇S · ∇ρ+

1

2
∆Sρ

)
e iS(t,x)/h

+h2 1

2
∆ρe iS(t,x)/h.
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The result

If we are able to solve S for t ∈ [−T ,T ] in:

∂tS +
1

2
|∇S |2 = 0, S |t=0 = S0,

and then ρ in:

∂tρ+∇S · ∇ρ+
1

2
∆Sρ = 0, ρ|t=0 = ρ0

then

ih∂tvh +
h2

2
∆vh =

h2

2
∆ρe iS(t,x)/h.

Therefore, the difference between the exact and approximate
solutions satisfies:

lim
h→0+

sup
t∈[−T ,T ]

‖uh (t, ·)− vh (t, ·)‖L2(M) = 0.
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Times of order one?

As a conclusion

lim
h→0+

∣∣∣e iht∆/2u0
h

∣∣∣2 dm = lim
h→0+

|vh (t, ·)|2 dm = |ρ (t, x)|2 dm.

By solving the transport equation, one sees that ρ(t, x) is
transported along classical trajectories corresponding to
(x , dS0(x)).

Times of order one?

This leads formally to considering vh(t/h, x). And therefore:

S(t/h, x), for h small.

Or, in other words, long time behavior for solutions to the
Hamilton-Jacobi equation.
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Wigner measures: motivation

We want to compare

|uh|2 (a density in M)

with
the classical flow φH

t (which lives in T ∗M)

via the Liouville equation, for densities in T ∗M.

Therefore, we shall replace |uh (x)|2 by a phase-space density
W h

uh
(x , ξ) called the Wigner measure of uh.
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Wigner measures: motivation (techincal)

It is not convenient to analyze directly |uh (t, x) |2.

Main reason

Even for times of order one, the limits of |uh (t, ·) |2 are not
determined by those of |uh (0, ·)|2.
An example in Rd with V = 0:

uh (0, ·) = ρ (x) e iξ0/h·x ⇒ |uh (t, x)|2 =
∣∣∣e it∆x/2ρ (x − tξ0/h)

∣∣∣2 .
Therefore |uh (t, ·)|2 does not only depend on |uh (0, ·)|2 = |ρ (x)|2
but also on ξ0.

This is because |uh (t, x) |2 does not detect the directions of
oscillations of the sequence (uh).
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Wigner measures: general definition

We replace the measure |uh|2 on M:∫
M
ϕ (x) |uh (t, x)|2 dx = (ϕuh (t, ·) |uh (t, ·))L2(M),

by the measure W h
uh

on T ∗M:∫
T∗M

a (x , ξ) W h
uh

(t, dx , dξ) := (oph (a) uh (t, ·) |uh (t, ·))L2(M).

Where, for a continuous a(x , ξ) defined on T ∗M,

oph (a) = a (x , hDx)

is a (semiclassical) pseudodifferential operator of symbol a.

This is called the Wigner measure of uh.
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Properties

1 It contains more information than |uh|2:∫
T∗

x M
W h

uh
(t, x , dξ) = |uh (t, x)|2 .

2 It is not positive, but its limits are. If

W h
uh

(t, ·) ⇀ µt , h → 0+,

then µt is a positive finite Radon measure on T ∗M.

3 Fundamental example, coherent states. If

uh (0, x) = h−d/4ρ
(

x−x0√
h

)
e iξ0/h·x then

W h
uh

(0, ·) ⇀ δx0 (x) δξ0 (ξ) ,

is concentrated on a point (x0, ξ0) in phase-space T ∗M.
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Egorov’s theorem

Let XH be the Hamiltonian vector field corresponding to
H (x , ξ) = 1

2 ‖ξ‖
2
x + V (x).

The Wigner measure W h
uh

solves:

∂tW
h
uh

+
1

2
div
(
W h

uh
XH

)
= hLhW

h
uh

on Rt × T ∗M,

where LhW
h
uh

is locally uniformly bounded in t.

The limiting Wigner measure solves the Liouville equation:

∂tµt +
1

2
div (µtXH) = 0.
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Fabricio Macià The semiclassical Schrödinger equation



C.P. W.K.B. Semiclassical Eigenfunctions Zoll Td

Egorov’s theorem

Let XH be the Hamiltonian vector field corresponding to
H (x , ξ) = 1

2 ‖ξ‖
2
x + V (x).

The Wigner measure W h
uh

solves:

∂tW
h
uh

+
1

2
div
(
W h

uh
XH

)
= hLhW

h
uh

on Rt × T ∗M,

where LhW
h
uh

is locally uniformly bounded in t.

The limiting Wigner measure solves the Liouville equation:

∂tµt +
1

2
div (µtXH) = 0.
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Eigenfunction limits

Let (ψλk
) be a sequence of normalized eigenfunctions of −∆

corresponding to eigenvalues λk →∞.

Write h = 1/
√
λj ; the Wigner measures are constant in t:

W h
e−itλ/2ψλ

= W h
ψλ

Their limits µ are:

1 probability measures,

2 invariant by the geodesic flow,

3 supported on S∗M := {(x , ξ) ∈ T ∗M : ‖ξ‖x = 1}.
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Problem

Classify all such limiting Wigner measures µ

Hard problem in general. Depends on fine dynamical properties of
the geodesic flow.

Some examples

On the torus Td : the projection of µ (x , ξ) is absolutely
continuous wrt Lebesgue measure (Bourgain). Complete
characterization for d = 2 (Jakobson). Open for d ≥ 3.

If (M, g) has negative curvature then the geodesic flow is
Anosov. Most eigenfunctions tend to dxdξ (Schnirelman,
Zelditch, Colin de Verdière, Rudnick-Sarnak...). Exceptional
sequences may concentrate on sets of positive entropy
(Anantharaman, Nonnenmacher).
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Theorem (D. Jakobson and S. Zelditch, 1997)

The set attainable measures µ in the sphere Sd is exactly the set of
all the measures in S∗Sd that are invariant under the geodesic flow.

Theorem (F.M., 2007)

The same holds if (M, g) is a Compact Rank-One Symmetric
Space (it necessarily has periodic geodesic flow).

Theorem (D. Azagra and F.M., 2008)

The same holds if (M, g) is homogeneous and of constant
sectional curvature K > 0.
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Times of order t ∼ 1/h

Theorem (F.M. 2006)

The following holds:

1 The rescaled Wigner measures W h
uh

(t/h, ·) converge in
average to a measure µ ∈ L∞ (Rt ;M+ (T ∗M)):∫

R
ϕ (t) W h

uh
(t/h, ·) dt ⇀

∫
R
ϕ (t)µ (t, ·) dt, ∀ϕ ∈ L1 (R) .

2 Every µ (t, ·) is invariant by the classical flow.

3 A weak form of Egorov’s theorem holds. If a ∈ C∞c (T ∗M) is
invariant, then:

lim
h→0+

∫
T∗M

aW h
uh

(t/h, ·) = lim
h→0+

∫
T∗M

aW h
uh

(0, ·)

=

∫
T∗M

a (x , ξ) dµ0 (x , ξ) .
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Manifolds with periodic geodesic flow

In order to obtain a more precise description of the set of Wigner
measures, we must restrict the geometry.
Suppose (M, g) is a Zoll manifold, i.e. a manifold such that every
geodesic is closed.

Theorem (F.M. 2006)

The following holds:∫
T∗M

a (x , ξ)µ (t, dx , dξ) =

∫
T∗M

〈a〉 (x , ξ)µ0 (dx , dξ) .

Here

〈a〉 (x , ξ) := lim
T→∞

1

T

∫ T

0
a (φs (x , ξ)) ds,

φs being the geodesic flow in T ∗M.
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As a consequence:

Corollary

If W h
uh

(0, ·) ⇀ δx0δξ0 then

µ (t, x , ξ) = δγ (x , ξ)

where γ is the geodesic issued from (x0, ξ0).

Corollary

The set of Wigner measures associated to solutions to
Schrödinger’s equation in a Zoll manifold coincides with the set of
invariant measures in T ∗M.
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Analysis in Td

Consider the set of resonant frequencies:

Ω :=
{
ξ ∈ Rd : ξ · k = 0 for some k ∈ Zd \ {0}

}
.

We have,

Theorem (F.M. 2007. Non-resonant case)

If µ0
(
Td × Ω

)
= 0 then,∫

T∗Td

a (x , ξ)µ (t, dx , dξ) =

∫
T∗Td

〈a〉 (x , ξ)µ0 (dx , dξ)

=

∫
T∗Td

(
1

(2π)d

∫
Td

a (y , ξ) dy

)
µ0 (dx , dξ)
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Resonant case

If µ0

(
Td × Ω

)
> 0 then µ (t, x , ξ) may be non-constant in time.

Example

Let ξ0 ∈ Ω. Take ρ ∈ C∞c
(
Rd
)

and let uh (x) be the periodization
of

ρ (x) e iξ0/h·x .

Then
µ0 (x , ξ) = |ρ (x)|2 dxδξ0 (ξ)

but

µ (t, x , ξ) =

〈∣∣∣e it∆x/2ρ (x)
∣∣∣2〉

ξ0

dxδξ0 (ξ) .

Above,

〈a〉ξ0 (x) := lim
T→∞

1

T

∫ T

0
a
(
x + tξ0

)
dt
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Resonant case

If µ0

(
Td × Ω

)
> 0 then µ (t, x , ξ) does not depend solely on µ0.

Example

Let ξ0 ∈ Ω and η0 ∈ Rd \ Ω. Suppose now that uh (x) is the
periodization of

ρ (x) e i(ξ0+εη0)/h·x

where h � ε. Then

µ (t, x , ξ) =

(
1

(2π)d

∫
Td

|ρ (y)|2 dy

)
dxδξ0 (ξ) .

Therefore, two distinct sequences with the same µ0 can give rise
to different measures µ.
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General result

Let P be the set of periodic geodesics of Td that pass through the
origin.

Theorem (F.M. 2008)

The following formula holds:

µ (t, x , ξ) =
∑
γ∈P

µγ (t, x , ξ) +
1

(2π)d

∫
Td

µ0 (dx , ξ) ,

where

µγ (t, x , ξ) =
[
e it∆x/2mγ (x , y , ξ) e−it∆y/2

]
|x=y ,

and mγ are measures on Rd
ξ taking values in the space of

symmetric, trace-class operators on L2 (γ) that only depend on the
initial data (uh(0, ·).
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Structure

Since mγ is trace-class, the projection of µγ (t, x , ξ) on x is in
L1
(
Td
)
.

The term ∑
γ∈P

µγ (t, x , ξ)

is concentrated on the set Ω of resonant frequencies.

The measures µγ (0, x , ξ) are two-micolocal objects that
characterize the concentration of energy of the initial data on
the hyperplane orthogonal to γ.
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