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@ The correspondence principle

© The W.K.B. method and Geometric Optics
© The semiclassical limit

@ Eigenfunction concentration

© Manifolds with periodic geodesic flow

@ The torus
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Classical Mechanics

Let (M, g) be a complete Riemannian manifold.

The position x (t) and momentum £ (t) of a free Newtonian
particle in M, vary according to:

{ X:8€H(X7€))
5.: _aXH(X7€);

where H, defined on T*M, is given in coordinates by:

H(x.€): Zg'f(x &g + V(x);
I,J 1
with (g¥) := (g) "

When V = 0, this defines the geodesic flow ¢; of (M, g) on
T*M.
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C.P.
The Liouville formulation

The Hamiltonian system of O.D.E.'s may also be written as a
P.D.E. for the density of particles p¢ (x,&) at time t:

1 .
81-/.1;[- + 5 div (/,LtXH) = 07

once an initial density p¢|t—0 = o on T*M is prescribed.
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C.P.
The Liouville formulation

The Hamiltonian system of O.D.E.'s may also be written as a
P.D.E. for the density of particles p¢ (x,&) at time t:

1 .
81-/.1;1- + 5 div (/,LtXH) = 07

once an initial density p¢|t—0 = o on T*M is prescribed.

Initial state (xo,&0) € T*M « initial density 119 (x,&) = 0x, (X) 0g, (£).

Fabricio Macia The semiclassical Schrodinger equation



C.P.
The Liouville formulation

The Hamiltonian system of O.D.E.'s may also be written as a
P.D.E. for the density of particles p¢ (x,&) at time t:

1 .
81-/.1;1- + 5 div (/,LtXH) = 07

once an initial density p¢|t—0 = o on T*M is prescribed.

Initial state (xo,&0) € T*M « initial density 119 (x,&) = 0x, (X) 0g, (£).

The solution g is then

Mt (Xv f) = 6x(t) (X) 5{(1') (5) )

where (x (t),£(t)) is the corresponding classical trajectory.
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Classical Mechanics

A quantum free particle moves according to Schrodinger's
equation:

h2
ihO¢u (t,x)—l—?Axu (t,x)=V(x)u(t,x) =0 for (t,x) € RxM.

Now, Ay is the Laplace-Beltrami operator associated to g. In
coordinates:

d
Do) = o5 Y Dep (987 () Dgu (),

ij=1

with p(x) := (det g (x))Y/2.
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Classical Mechanics

A quantum free particle moves according to Schrodinger's
equation:

h2
ihO¢u (t,x)—l—?Axu (t,x)=V(x)u(t,x) =0 for (t,x) € RxM.

Now, Ay is the Laplace-Beltrami operator associated to g. In
coordinates:

d
Do) = o5 Y Dep (987 () Dgu (),

ij=1

with p(x) := (det g (x))Y/2.

Interpretation

o |u(t,x)|? is the position probability density;

o “|T(t,&)*" is the momentum probability density.
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Solutions to the Schrodinger equation

Suppose A — V has discrete spectrum (e.g., if M is compact or
V(x) — +00).

X—00

Then there exists a sequence of eigenvalues 0 < \; 400 and an
orthonomal basis in L2 (M) consisting of eigenfunctions:

h2
—?Aw)\j (X) + V(X) ¢>‘j = )\ﬂﬁ)\j, x € M.

The solutions to the Schrodinger equation are of the form:

Ze N () ¥y, (x) -
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The Classical-Quantum correspondence |

As the characteristic oscillation frequencies 1/h? of a solution
u(t,x) to the Schrodinger equation tend to infinity, the behavior
of |u(t,x)[? is determined by classical mechanics.
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The Classical-Quantum correspondence |l

A little bit more precise

If (up) is an h-oscillatory sequence:

up (t,x) = Z e "™, (A) ¥y (%)

r/R2<A<R/h?

for some 0 < r < R (this means that (uj) oscillates at frequencies
~ 1/h?) then the limit of

lup (t,x) ]2, as h— 0%,

propagates according to a law related to the classical dynamics
(if V =0, this is the geodesic flow of (M, g)).
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Realizations of the C-Q

Times t ~ 1 - The Semiclassical Limit

lup(t, x)|? propagates following classical mechanics.

The geometry does not play a role.
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Realizations of the C-Q

Times t ~ 1 - The Semiclassical Limit

lup(t, x)|? propagates following classical mechanics.

The geometry does not play a role.

Uniform in time - Eigenfunction concentration

If up(0,-) = 1y is an eigenfunction, then the solution of the
evolution problem satisfies

i 2
|elt/\¢)\|2 _ |¢>\| )

The limit A = 1/h? — oo depends on fine dynamical properties of
the geodesic flow.
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Realizations of the C-Q

Times t ~ 1/ - Long-time semiclassical limit

This is the intermediate regime we shall be interested in.
It requires an analysis of the full propagator for long times:

|un(t/h, x) 2.

One expects that the dispersive effects associated to the
Schrodinger equation become effective.
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Classical approach

Consider
up (t, x) := eMA2,9,
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Classical approach

Consider
up (t, x) := eMA2,9,

which solves the semiclassical Schrodinger equation:

h2
ihatUh (t,X) + ?AUh (t,X) =0.
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Classical approach

Consider
up (t, x) := eMA2,9,

which solves the semiclassical Schrodinger equation:

h2
ihatUh (t,X) + ?AUh (t,X) =0.

Consider initial data of the form:

) (x) = po (x) €509/,
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Classical approach

Consider
up (t, x) := eMA2,9,

which solves the semiclassical Schrodinger equation:

h2
ihatUh (t,X) + ?AUh (t,X) =0.

Consider initial data of the form:
8 (x) = po (x) 0/,

The W.K.B. method constructs an approximate solution with
this initial data.
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The Ansatz

Look for an approximate solution of the form

vh (t,x) := p(t, x) eis(t’x)/h,
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The Ansatz

Look for an approximate solution of the form

vh (t,x) := p(t, x) eis(t’x)/h,

Then,

h2
ihdevy + = Avy = —p <at5+ |v5|) S(tx)/h

Fabricio Macia The semiclassical Schrodinger equation



The Ansatz

Look for an approximate solution of the form

vh (t,x) := p(t, x) eis(t’x)/h,
Then,

h2
ihdevy + = Avy = —p <at5 + Z|VS| ) S(tx)/h

1 )
~+ih <0tp—|— VS -Vp+ 2A5p> elS(t.‘,x)/h
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The Ansatz

Look for an approximate solution of the form

vh (t,x) := p(t, x) eis(t’x)/h,

Then,

h2
ihdevy + = Avy = —p <at5 + Z|VS| ) S(tx)/h

1 )
~+ih <0tp—|— VS -Vp+ 2A5p> elS(t.‘,x)/h

+h2%ApeiS(t7X)/h.
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The result

If we are able to solve S for t € [T, T] in:

1
0S+ 5 IVS]? =0, Sle—o = So,
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The result

If we are able to solve S for t € [T, T] in:
1 2
8t5+§|VS| :O, 5|t:0:SO;
and then p in:

1
Ocp +VS-Vp+ 5ASp =0,  ple=o = po
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The result

If we are able to solve S for t € [T, T] in:
1 2
8t5+§|VS| :O, 5|t:0:SO;
and then p in:
1
Ocp +VS-Vp+ 5ASp =0,  ple=o = po

then
2

: h W S(ex)/h
Ihach + ?AVh = ?Ape ’ .

Fabricio Macia The semiclassical Schrodinger equation



The result

If we are able to solve S for t € [T, T] in:
1 2
8t5+§|VS| :O, 5|t:0:SO;
and then p in:
1
Ocp +VS-Vp+ 5ASp =0,  ple=o = po

then
2

, h W S(ex)/h
Ihach + ?AVh = ?Ape ’ .

Therefore, the difference between the exact and approximate
solutions satisfies:

lim  sup up(t,-) — vp(t,- =0.
Jim sup s (5 = v (6 s
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Times of order one?

As a conclusion

hlin& eihtA/zug dm = Iim+ |vh (t, )]2 dm = ]p(t,x)]2 dm.

—0

‘ 2

By solving the transport equation, one sees that p(t, x) is
transported along classical trajectories corresponding to
(x, dSo(x)).
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Times of order one?

As a conclusion

lim |e*4/2yp

2
h—0+ ’

dm = i t. )% dm = |p (t, x)|? dm.
m hggJVh(,)! m = |p(t,x)|* dm

By solving the transport equation, one sees that p(t, x) is
transported along classical trajectories corresponding to
(x, dSo(x)).

Times of order one?

This leads formally to considering vi(t/h, x). And therefore:
S(t/h, x), for h small.

Or, in other words, long time behavior for solutions to the
Hamilton-Jacobi equation.
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Semiclassical

Wigner measures: motivation

We want to compare
lup|® (a density in M)

with
the classical flow ¢! (which lives in T*M)

via the Liouville equation, for densities in T*M.
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Semiclassical

Wigner measures: motivation

We want to compare
lup|® (a density in M)
with
the classical flow ¢! (which lives in T*M)
via the Liouville equation, for densities in T*M.

Therefore, we shall replace |up, (x)|2 by a phase-space density
W} (x,€) called the Wigner measure of uj.
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Semiclassical

Wigner measures: motivation (techincal)

It is not convenient to analyze directly |uj, (t, x) |?.

Main reason

Even for times of order one, the limits of |up (t,-)|? are not

determined by those of |up (0, -)|°.
An example in RY with V = 0:
. . 2
n (0,7) = () €97 = up (£,x) 2 = [e4+/2p (x — tto/h)

Therefore |up (t,-)|* does not only depend on |uj, (0,-)]? = |p (x)[?
but also on &.

This is because |up, (t, x) |? does not detect the directions of
oscillations of the sequence (up).
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Semiclassical

Wigner measures: general definition

2
We replace the measure |up|” on M:

/M o () [un (£, )2 dx = (o (£, ) [un (£, )) 2
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Semiclassical

Wigner measures: general definition

We replace the measure |u;|* on M:
200 (650 de = G 2. o (s
by the measure W:h on T*M:
[l W (e d) = (om (a)un 2. (& Dz

Where, for a continuous a(x, &) defined on T*M,
op, (a) = a(x, hDy)

is a (semiclassical) pseudodifferential operator of symbol a.
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Semiclassical

Wigner measures: general definition

2
We replace the measure |up|” on M:

/M o () [un (£, )2 dx = (o (£, ) [un (£, )) 2

by the measure W:h on T*M:

/ y a(x,§) WLZ (t, dx, d&) = (opp (a) un (t,-) |un (t,-))2(m)-
Where, for a continuous a(x, &) defined on T*M,
op, (a) = a(x, hDy)

is a (semiclassical) pseudodifferential operator of symbol a.

This is called the Wigner measure of uy.
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Semiclassical

Properties

Q It contains more information than |uy|?:

/* h(t,x, d€) = |up (£, %)
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Semiclassical
Properties

Q It contains more information than |uy|?:

/ (%, d€) = [u (£, )]
@ It is not positive, but its limits are. If
W:h (ta')é,utv h_>0+7

then pu: is a positive finite Radon measure on T*M.
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Semiclassical
Properties

Q It contains more information than |uy|?:

/ (%, d€) = [u (£, )]
@ It is not positive, but its limits are. If
W:h (ta')é,utv h_>0+7

then pu: is a positive finite Radon measure on T*M.

© Fundamental example, coherent states. If
up (0,x) = h=9/4p (%) e€*/h then

Wi, (0,-) = by, (x) 8o (),

is concentrated on a point (xp,&p) in phase-space T*M.
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Semiclassical
Egorov's theorem

Let Xy be the Hamiltonian vector field corresponding to
H(x.€) = 3 €Il + V ().
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Semiclassical
Egorov's theorem

Let Xy be the Hamiltonian vector field corresponding to
2

H(x.€) = 3 €l + V (x).

The Wigner measure Wj’h solves:

1
OcWp, + 5 div (WhXu) = hEyWs  on Ry x T*M,

where L, Wlfh is locally uniformly bounded in t.
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Semiclassical
Egorov's theorem

Let Xy be the Hamiltonian vector field corresponding to
2

H(x,€) = 3 lIEllx + V ().

The Wigner measure th solves:

1
OcWp, + 5 div (WhXu) = hEyWs  on Ry x T*M,

h

where L, Wlfh is locally uniformly bounded in t.

The limiting Wigner measure solves the Liouville equation:

1 .
8tut + 5 div (/,LtXH) =0.
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Eigenfunctions

Eigenfunction limits

Let (¢),) be a sequence of normalized eigenfunctions of —A
corresponding to eigenvalues A\ — o0.
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Eigenfunctions
Eigenfunction limits

Let (¢),) be a sequence of normalized eigenfunctions of —A
corresponding to eigenvalues A\ — o0.

Write h = 1/,/);; the Wigner measures are constant in t:
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Eigenfunctions
Eigenfunction limits

Let (¢),) be a sequence of normalized eigenfunctions of —A
corresponding to eigenvalues A\ — o0.

Write h = 1/,/);; the Wigner measures are constant in t:

Their limits p are:
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Eigenfunctions
Eigenfunction limits

Let (¢),) be a sequence of normalized eigenfunctions of —A
corresponding to eigenvalues A\ — o0.

Write h = 1/,/);; the Wigner measures are constant in t:

Their limits p are:
© probability measures,
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Eigenfunctions
Eigenfunction limits

Let (¢),) be a sequence of normalized eigenfunctions of —A
corresponding to eigenvalues A\ — o0.

Write h = 1/,/);; the Wigner measures are constant in t:

Their limits p are:
© probability measures,
@ invariant by the geodesic flow,

Fabricio Macia The semiclassical Schrodinger equation




Eigenfunctions
Eigenfunction limits

Let (¢),) be a sequence of normalized eigenfunctions of —A
corresponding to eigenvalues A\ — o0.

Write h = 1/,/);; the Wigner measures are constant in t:

Their limits p are:

© probability measures,
@ invariant by the geodesic flow,
© supported on S*M = {(x,&) € T*M : |||, = 1}.
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Eigenfunctions

Problem

Classify all such limiting Wigner measures
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Eigenfunctions

Problem

Classify all such limiting Wigner measures

Hard problem in general. Depends on fine dynamical properties of
the geodesic flow.
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Eigenfunctions

Problem
Classify all such limiting Wigner measures

Hard problem in general. Depends on fine dynamical properties of
the geodesic flow.

Some examples

@ On the torus TY: the projection of u(x, &) is absolutely
continuous wrt Lebesgue measure (Bourgain). Complete
characterization for d = 2 (Jakobson). Open for d > 3.

Fabricio Macia The semiclassical Schrodinger equation



Eigenfunctions

Problem
Classify all such limiting Wigner measures

Hard problem in general. Depends on fine dynamical properties of
the geodesic flow.

Some examples

@ On the torus TY: the projection of u(x, &) is absolutely
continuous wrt Lebesgue measure (Bourgain). Complete
characterization for d = 2 (Jakobson). Open for d > 3.

e If (M, g) has negative curvature then the geodesic flow is
Anosov. Most eigenfunctions tend to dxd¢ (Schnirelman,
Zelditch, Colin de Verdiére, Rudnick-Sarnak...). Exceptional
sequences may concentrate on sets of positive entropy
(Anantharaman, Nonnenmacher).
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Eigenfunctions

Theorem (D. Jakobson and S. Zelditch, 1997)

The set attainable measures i in the sphere S9 is exactly the set of
all the measures in S*SY that are invariant under the geodesic flow.
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Eigenfunctions

Theorem (D. Jakobson and S. Zelditch, 1997)

The set attainable measures i in the sphere S9 is exactly the set of
all the measures in S*SY that are invariant under the geodesic flow.

Theorem (F.M., 2007)

The same holds if (M, g) is a Compact Rank-One Symmetric
Space (it necessarily has periodic geodesic flow).
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Eigenfunctions

Theorem (D. Jakobson and S. Zelditch, 1997)

The set attainable measures i in the sphere S9 is exactly the set of
all the measures in S*SY that are invariant under the geodesic flow.

Theorem (F.M., 2007)

The same holds if (M, g) is a Compact Rank-One Symmetric
Space (it necessarily has periodic geodesic flow).

Theorem (D. Azagra and F.M., 2008)

The same holds if (M, g) is homogeneous and of constant
sectional curvature K > 0.
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Zoll

Times of order t ~ 1/h

Theorem (F.M. 2006)
The following holds:

© The rescaled Wigner measures W[f’h (t/h,-) converge in
average to a measure j1 € L (Ry; My (T*M)):

/() (t/h,- dté/ t)u(t,-)dt, Veel'(R).
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Zoll

Times of order t ~ 1/h

Theorem (F.M. 2006)
The following holds:

© The rescaled Wigner measures W[f’h (t/h,-) converge in
average to a measure j1 € L (Ry; My (T*M)):

/() (t/h,- dté/ t)u(t,-)dt, Veel'(R).

@ Every 1 (t,-) is invariant by the classical flow.
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Zoll

Times of order t ~ 1/h

Theorem (F.M. 2006)
The following holds:

© The rescaled Wigner measures W[f’h (t/h,-) converge in
average to a measure j1 € L (Ry; My (T*M)):

/() (t/h,- dté/ t)u(t,-)dt, Veel'(R).

@ Every 1 (t,-) is invariant by the classical flow.

© A weak form of Egorov's theorem holds. If a € C° (T*M) is
invariant, then:

Iim/ aW) (t/h,) = Iim/ aw} (0,-)
*M *M

h—0+ h—0+

:/ a(x,&) duo (x,§).
M
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Manifolds with periodic geodesic flow

In order to obtain a more precise description of the set of Wigner

measures, we must restrict the geometry.
Suppose (M, g) is a Zoll manifold, i.e. a manifold such that every

geodesic is closed.
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Zoll

Manifolds with periodic geodesic flow

In order to obtain a more precise description of the set of Wigner
measures, we must restrict the geometry.
Suppose (M, g) is a Zoll manifold, i.e. a manifold such that every

geodesic is closed.
Theorem (F.M. 2006)
The following holds:

| a@nedede) = [ (@)00) u(dxde).
» o

Here
.
@ (9= fim [ a(6:(x.) .

¢s being the geodesic flow in T*M.
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As a consequence:

If W) (0,-) = 6,0¢, then

1% (t,X,{) = 5’7 (X,f)

where ~y is the geodesic issued from (xp, &o).

The set of Wigner measures associated to solutions to
Schrodinger's equation in a Zoll manifold coincides with the set of
invariant measures in T*M.

Fabricio Macia The semiclassical Schrodinger equation



Td

Analysis in T¢

Consider the set of resonant frequencies:

Q::{feRd : §-k:0forsomek€Zd\{O}}.
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Td

Analysis in T¢

Consider the set of resonant frequencies:
Q= {feRd : §-k:0forsomek€Zd\{O}}.

We have,

Theorem (F.M. 2007. Non-resonant case)
If 1° (Td X Q) =0 then,

/ 3 (x,€) p (t, dx, dE) = / () (%, €) o (dx, dE)
T*'H‘d

T*Td

_ /T*Td ((271r)d /Tda(y,ﬁ) dy) po (dx, d§)
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Td

Resonant case

If 1o (T? x Q) > 0 then (¢, x,€) may be non-constant in time.
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Td

Resonant case

If 1o (T? x Q) > 0 then (¢, x,€) may be non-constant in time.

Example
Let £ € Q. Take p € C2° (RY) and let up (x) be the periodization
of p(x) i€/ hx
Then
1o (x,€) = |p (x)|? dxdeo (€)
but
p(t,x, &) = < e"tAx/2p(x)‘2>£o dxdgo (€) .
Above,
1 [T
(o (0= fim = [ 2 (x+ e6%)
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Td

Resonant case

If po (T x Q) > 0 then p(t, x,€) does not depend solely on yq.

Fabricio Macia The semiclassical Schrodinger equation



Td

Resonant case

If po (T x Q) > 0 then p(t, x,€) does not depend solely on yq.

Example

Let €9 € Q and n° € RY\ Q. Suppose now that up, (x) is the
periodization of

P (X) ei(£°+5n°)/h-x

where h < . Then

1
p(t,x, &) = <(27r)d /Td Ip(y)IQdy> dxdeo (§) -

Therefore, two distinct sequences with the same g can give rise
to different measures p.
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Td

General result

Let P be the set of periodic geodesics of T that pass through the
origin.

Theorem (F.M. 2008)

The following formula holds:

it €)= p (£,%,6) + )/uo(dX§)

YEP

where
IM’Y (t, X, 5) = |:eitAX/2m'Y (X7 Y, 5) e_itAY/2:| |X:}/7

and m, are measures on Rg’ taking values in the space of
symmetric, trace-class operators on L2 (vy) that only depend on the
initial data (up(0,-).
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Structure

@ Since m, is trace-class, the projection of p., (t,x,&) on x is in
L (T9).
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Structure

@ Since m, is trace-class, the projection of p., (t,x,&) on x is in
L (T9).
@ The term

Zﬂv (t,x,€)

YyEP

is concentrated on the set Q2 of resonant frequencies.
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Structure

@ Since m, is trace-class, the projection of p., (t,x,&) on x is in
L (T9).
@ The term

Zﬂv (t,x,€)

YyeP
is concentrated on the set Q2 of resonant frequencies.

@ The measures 1., (0, x, ) are two-micolocal objects that
characterize the concentration of energy of the initial data on
the hyperplane orthogonal to 7.
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