LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQUATIONS WITH APPLICATIONS TO BOSE-EINSTEIN CONDENSATES

V. Pérez-García¹ & R. Pardo²

¹U. Castilla-La Mancha, Ciudad Real, Spain victor.perezgarcia@uclm.es ²U. Complutense de Madrid, Madrid, Spain rpardo@mat.ucm.es

> V. Pérez-García¹ & R. Pardo² **LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQS.**

Abstract

• We study the properties of the ground state of Nonlinear Schrödinger Equations with spatially inhomogeneous interactions and show that it experiences a strong localization on the spatial region where the interactions vanish.

Abstract

- We study the properties of the ground state of Nonlinear Schrödinger Equations with spatially inhomogeneous interactions and show that it experiences a strong localization on the spatial region where the interactions vanish.
- Moreover, the parameter λ (chemical potential) exhibits a limited range of variation.

Abstract

- We study the properties of the ground state of Nonlinear Schrödinger Equations with spatially inhomogeneous interactions and show that it experiences a strong localization on the spatial region where the interactions vanish.
- Moreover, the parameter λ (chemical potential) exhibits a limited range of variation.
- **The experimental generation of Bose-Einstein condensates** (BEC) with ultracold dilute atomic vapors has turned out to be important for physics. The formation of a condensate occurs when the temperature is low enough and most of the atoms occupy the ground state of the system.

Outline

- **Mathematical modelling**
- Localization phenomena: several examples
	- A "toy" example
	- Numerical approximations: one dimensional systems
	- Numerical approximations: a three-dimensional example
- **Unbounded solutions**
	- Preliminaries and notation
	- **•** Main result

• Nonlinear interactions between atoms in a Bose-Einstein condensate are dominated by the two-body collisions

- Nonlinear interactions between atoms in a Bose-Einstein condensate are dominated by the two-body collisions
- Interactions can be made spatially dependent by acting on either the spatial dependence of the magnetic field or the laser intensity
- Nonlinear interactions between atoms in a Bose-Einstein condensate are dominated by the two-body collisions
- Interactions can be made spatially dependent by acting on either the spatial dependence of the magnetic field or the laser intensity
- It is reasonable to think that a BEC will avoid regions of large repulsive interactions and prefer to remain in regions with smaller interactions, the localization phenomenon to be described in this paper here goes beyond what one would naively expect.

 $^{\prime}$ 2

Introduction

- **Mathematical modelling**
- Localization phenomena: several examples
	- A "toy" example
	- Numerical approximations: one dimensional systems
	- Numerical approximations: a three-dimensional example
- **Unbounded solutions**
	- Preliminaries and notation
	- **•** Main result

We consider the nonlinear Schrödinger equation (NLS)

$$
i\frac{\partial\psi}{\partial t}=-\frac{1}{2}\Delta\psi+V(x)\psi+g(x)|\psi|^{p-1}\psi,
$$
 (2.1)

in \mathbb{R}^N , where $p > 1$ is a real parameter and q, $V > 0$ are continuous non-negative real functions.

V describes an external localized potential acting on the system satisfying,

$$
V(x) \to \infty, \qquad \text{as } |x| \to \infty,
$$
 (2.2)

and *g* is a spatially dependent coefficient of the nonlinear term.

Stationary solutions of Eq. [\(2.1\)](#page-10-0) are defined through

$$
\psi(x,t) = \phi(x) \exp(i\lambda t) \tag{2.3}
$$

which leads to

$$
\lambda \phi = -\frac{1}{2} \Delta \phi + V(x) \phi + g(x) |\phi|^{p-1} \phi.
$$
 (2.4)

We are interested in the so-called ground state, which is the the real, stationary positive solution of the equation [\(2.4\)](#page-11-0) which minimizes the energy functional

$$
E(\phi) = \int_{\mathbb{R}^3} \left[\frac{1}{4} |\nabla \phi|^2 + V(x) |\phi|^2 + \frac{1}{p+1} g(x) |\phi|^{p+2} \right], \quad (2.5)
$$

under a prescribed *L*2− norm

$$
\int_{\mathbb{R}^3} |\phi|^2 dx,
$$

which represents the number of particles in the condensate.

We study properties of the positive solution of the following Eq.

$$
-\frac{1}{2}\Delta u + V(x)u = \lambda u - g(x)u^p, \qquad x \in \mathbb{R}^N \qquad (2.6)
$$

called ground state, when the interactions vanish on a certain set of points and where *V* satisfies [\(2.2\)](#page-10-1), i.e.

$$
V(x) \to \infty, \quad \text{as } |x| \to \infty.
$$

Set

$$
\omega:=\{x\in\mathbb{R}^N:g(x)>0\}
$$

and

$$
\Omega_0:=\mathbb{R}^N\setminus\overline{\omega},
$$

i.e.

$$
\Omega_0 := \text{int}\{\mathbf{x} \in \mathbb{R}^N : g(\mathbf{x}) = 0\},\tag{2.7}
$$

We assume that Ω_0 is composed by a finite number of connected components

$$
\Omega_0 = \bigcup_{1 \leq j \leq J} \Omega_j, \qquad \overline{\Omega_j} \cap \overline{\Omega_j} = \emptyset \quad \text{if } j \neq j
$$

and it is assumed that each component Ω*^j* is regular enough.

We prove in Theorem [6](#page-48-0) that if u_λ is a positive solutions of NLS [\(2.6\)](#page-13-0), then

$$
u_{\lambda}(x)\uparrow\infty,\qquad\text{as }\lambda\uparrow\sigma_0\qquad\forall x\in\Omega_j,
$$

where σ_0 is the minimum

$$
\sigma_0 := \min\{\sigma_1(\Omega_j) : 1 \le j \le J\},\tag{2.8}
$$

and Ω_i is the connected set where the minimum σ_0 is attained, i.e.

$$
\sigma_0:=\sigma_1(\Omega_j).
$$

Moreover, if

$$
\sigma_0 = \sigma_1(\Omega_j) = \sigma_1(\Omega_i) \quad \text{with} \quad i \neq j
$$

then the positive solution diverges pointwise for each

 $x \in \Omega_i \cup \Omega_i$.

Related phenomena have been described in the mathematical analysis of logistic equations for vanishing *g* in bounded domains, see

[García-Melián, Gomez-Reñasco, Lopez-Gomez & Sabina 98, Fraile, Medina, López-Gómez & Merino 96, López-Gómez & Sabina 98].

To consider situations of real physical interest we must move to unbounded domains.

A "tov" example Numerical approximations: one dimensional systems Numerical approximations: a three-dimensional example

Outline

Introduction

Mathematical modelling

Localization phenomena: several examples $\begin{pmatrix} 3 \end{pmatrix}$

- A "toy" example
- Numerical approximations: one dimensional systems
- Numerical approximations: a three-dimensional example

Unbounded solutions

- Preliminaries and notation
- **•** Main result

[A "toy" example](#page-18-0)

[Numerical approximations: one dimensional systems](#page-20-0) [Numerical approximations: a three-dimensional example](#page-24-0)

$$
-u'' = \lambda u - g(x)u^3, \qquad x \in (-L, L) \tag{3.1a}
$$

$$
u(L) = u(-L) = 0,
$$
 (3.1b)

(3.1c)

with

$$
V(x) = \begin{cases} 0 & |x| < L, \\ \infty & |x| > L. \end{cases}
$$
 (3.2)

$$
g(x) = \begin{cases} g_0 & |x| < a, \\ 0 & |x| > a. \end{cases}
$$
 (3.3)

A "toy" example

Numerical approximations: one dimensional systems Numerical approximations: a three-dimensional example

 $n(x) = u^2(x),$ $L = 2, a = 1$ (a) $g_0||u||_{L^2(\mathbb{R}^N)}$ $= 2, 3.55, 6.$ (b) $g_0 ||u||_{L^2(\mathbb{R}^N)}$ 25, 50, 100, 200.

A "toy" example Numerical approximations: one dimensional systems Numerical approximations: a three-dimensional example

Now

 $V(x) = 0.02x^2$,

and

$$
g_0(x) = 1,
$$

\n
$$
g_1(x) = e^{-x^2/200},
$$

\n
$$
g_2(x) = e^{-x^2/50}
$$

(a) max_x
$$
u^2(x)
$$

(b) $W^2 = \int x^2 u^2(x) dx / ||u||_{L^2(\mathbb{R}^N)}$ g_0 , g_1 , g_2

A "tov" example Numerical approximations: one dimensional systems Numerical approximations: a three-dimensional example

(c) $u(x)$ for $||u||_{L^2(\mathbb{R}^N)} = 10$, 100, 1000, $g(x) = g_1(x)$.
- - homogeneous interactions and $||u||_{L^2(\mathbb{R}^N)} = 1000$. (d) $u(x)$ for $||u||_{L^2(\mathbb{R}^N)} = 10.000, 40.000$.

[A "toy" example](#page-18-0) [Numerical approximations: one dimensional systems](#page-20-0) [Numerical approximations: a three-dimensional example](#page-24-0)

Number of particles $||u||_{L^2(\mathbb{R}^N)}$ against λ for $g(x) = \exp(-x^2/200), \quad V(x) = 0.02x^2.$ (b) small $||u||_{L^2(\mathbb{R}^N)}$ when λ approaches the eigenvalue of the linearized problem.

A "tov" example Numerical approximations: one dimensional systems Numerical approximations: a three-dimensional example

Dependence of the number of particles in the ground state $||u||_{L^2(\mathbb{R}^N)}$ on the eigenvalue (chemical potential) λ for $g_4(x) = (1 - 0.001x^2)_+,$ and $V(x) = 0.02x^2$.

[A "toy" example](#page-18-0) [Numerical approximations: one dimensional systems](#page-20-0) [Numerical approximations: a three-dimensional example](#page-24-0)

$$
V(x, y, z) = \frac{1}{2} (x^2 + y^2 + z^2),
$$
\n(3.4a)
\n
$$
g(x, y, z) = g_0 \left[1 - \exp \left(-\frac{x^2 + y^2 + z^2}{2w^2} \right) \right],
$$
\n(3.4b)

and nonlinear interactions

$$
g||u||_{L^2(\mathbb{R}^N)}
$$
 in the range $10^3 - 10^5$.

[A "toy" example](#page-18-0) [Numerical approximations: one dimensional systems](#page-20-0) [Numerical approximations: a three-dimensional example](#page-24-0)

(a) $\sqrt{n(x, 0, 0)}$ for $g_0 = 10^3$, 10^4 (b) $\sqrt{n(x, y, 0)}$ for $g_0N = 10^3$ on $(x, y) \in [-10, 10] \times [-10, 10]$ (c) $\sqrt{n(x, y, 0)}$ for $g_0N = 10^4$ on $(x, y) \in [-15, 15] \times [-15, 15]$

Preliminaries and notation Main result

Outline

Introduction

- Mathematical modelling
- Localization phenomena: several examples
	- A "toy" example
	- Numerical approximations: one dimensional systems
	- Numerical approximations: a three-dimensional example

Unbounded solutions $\overline{4}$

- Preliminaries and notation
- **•** Main result

Preliminaries and notation Main result

In this Section we will prove two of the observed phenomena:

V. Pérez-García¹ & R. Pardo² **LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQS.**

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

In this Section we will prove two of the observed phenomena:

(i) the existence of a finite range of values of λ ,

$\sigma_1 < \lambda < \sigma_0$

where σ_0 , σ_1 will be defined later, and

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

In this Section we will prove two of the observed phenomena:

(i) the existence of a finite range of values of λ ,

 $\sigma_1 < \lambda < \sigma_0$

where σ_0 , σ_1 will be defined later, and (ii) the unboundedness of the solutions when

 $\lambda \rightarrow \sigma_0$.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

We shall fix the potential *V* satisfying hypothesis [\(2.2\)](#page-10-1), i.e.

 $V(x) \rightarrow \infty$, as $|x| \rightarrow \infty$.

Let $\Omega \subset \mathbb{R}^N$ be an open nonempty set, possibly unbounded, with boundary regular enough, let us denote by

$$
H(\Omega, V) := \left\{ u \in H_0^1(\Omega) : \int_{\Omega} V u^2 < +\infty \right\},\qquad(4.1)
$$

H(Ω, *V*) is the completion of $C_0^{\infty}(\Omega)$ in the metric derived from the norm

$$
||u|| := \left(\int_{\Omega} |\nabla u|^2 + V u^2\right)^{1/2}, \tag{4.2}
$$

and *H*(Ω,*V*) is a Hilbert space with the scalar product

$$
\langle u, v \rangle := \int_{\Omega} \nabla u \nabla v + V uv. \tag{4.3}
$$

V. Pérez-García¹ & R. Pardo² [LOCALIZATION PHENOMENA IN](#page-0-0) NONLINEAR SCHRÖDINGER EQS.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Consider the operator *L* defined by

$$
Lu := -\Delta u + V u, \qquad \text{for } u \in D(L, \Omega) \tag{4.4}
$$

where

$$
D(L,\Omega):=\{u\in H(\Omega,V):-\Delta u+Vu\in L^2(\Omega)\}.
$$
 (4.5)

Let us first write the following lemma

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Lemma (1)

Let $\Omega \subset \mathbb{R}^N$ *be an open nonempty set, possibly unbounded, with boundary regular enough. If V satisfy hypothesis* [\(2.2\)](#page-10-1)*, then the following assertions are true*

i) $H(Ω, V)$ → $L²(Ω)$ *with compact embedding*

ii) *the operator L defined by Eq. [\(4.4\)](#page-31-0), has a discrete spectrum, noted by* $\sigma(L, \Omega)$, *i.e.* $\sigma(L, \Omega)$ *consists of an infinite sequence of isolated eigenvalues* $\{\sigma_n(\Omega)\}\uparrow\infty$ *with finite multiplicities.*

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

(Cont.)

iii) Moreover, the Rayleigh sup-inf characterization for the eigenvalues holds, and in particular the first eigenvalue, denoted by $\sigma_1(\Omega)$, satisfies

$$
\sigma_1(\Omega) = \inf_{\psi \in H(\Omega, V)} \frac{\int_{\Omega} |\nabla \psi|^2 + V \psi^2}{\int_{\Omega} \psi^2}
$$
(4.6)

iv) the first eigenvalue is positive, simple with a positive eigenfunction, $\phi_1(\Omega) > 0$, and there is no other eigenvalue with a positive eigenfunction.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

This lemma consists of known results from spectral theory and Krein-Rutman theorem.

In general,

$$
D(L, \Omega) = D(L, \Omega, V),
$$

\n
$$
\sigma_n(\Omega) = \sigma_n(\Omega, V),
$$

\n
$$
\phi_n(\Omega) = \phi_n(\Omega, V) \cdots
$$

we will consider a fixed *V* and we will skip the dependence on *V*.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Let $[H(\Omega, V)]^*$ denote the dual space of all linear and continuous functionals defined on *H*(Ω,*V*),

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Remark

The above Lemma can be understood in the following way, the inverse operator

$$
L^{-1}:[H(\Omega,V)]^*\to H(\Omega,V)
$$

is well defined and, thanks to the compact embedding in lemma [1.](#page-32-0)i),

$$
L^{-1}:L^2(\Omega)\to L^2(\Omega)\qquad\text{compact.}
$$

Preliminaries and notation Main result

Next, we will compare

the eigenvalues defined on Ω

with

the eigenvalues defined in the whole \mathbb{R}^N .

We will denote by

$$
H, \qquad D(L), \qquad \sigma_n, \qquad \phi_n, \cdots
$$

the space, the domain of the operator, the eigenvalues and the eigenfunctions and so on for the operator L defined on \mathbb{R}^N .

Preliminaries and notation Main result

Define the Hilbert space

$$
H:=\left\{u\in H^{1}(\mathbb{R}^{N}): \int_{\mathbb{R}^{N}}V u^{2}<+\infty\right\},\qquad(4.8)
$$

and the operator L

$$
Lu := -\Delta u + V u, \qquad \text{for } u \in D(L) \tag{4.9}
$$

where now

$$
D(L) := \left\{ u \in H : -\Delta u + Vu \in L^{2}(\mathbb{R}^{N}) \right\}.
$$
 (4.10)

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Observe that the above lemmas [1,](#page-32-0) [2](#page-35-0) still hold, in particular

 $H \hookrightarrow L^2(\mathbb{R}^N)$, with compact embedding if $N > 2$

and whenever *V* satisfies hypothesis [\(2.2\)](#page-10-0).

The elliptic operator *L* as defined in [\(4.9\)](#page-38-0) admits a

unique principal eigenvalue in \mathbb{R}^N , noted by σ_1 .

This principal eigenvalue is the bottom of the spectrum of L in the function space *H*, and it admits an associated positive principal eigenfunction.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

In the following lemma we collect the monotonicity properties of the eigenvalues with respect to the domain.

As a consequence, we can compare the eigenvalues defined on $\Omega \subsetneq \mathbb{R}^{\mathsf{N}}$ with the eigenvalues defined in the whole $\mathbb{R}^{\mathsf{N}}.$

Lemma (3. Monotonicity properties of the eigenvalues with respect to the domain)

Let

$$
\sigma_1(\Omega) \leq \sigma_2(\Omega) \leq \cdots
$$

be the eigenvalues of L, *with corresponding eigenfunctions*

 $\phi_1(\Omega)$, $\phi_2(\Omega) \cdots$

defined on H(Ω).

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

(Cont.)

For a subdomain

 $Ω^* ⊂ Ω$

with boundary regular enough, let

$$
\sigma_1(\Omega^*) \leq \sigma_2(\Omega^*) \leq \cdots
$$

be the eigenvalues of *L*, with corresponding eigenfunctions

 $\phi_1(\Omega^*), \phi_2(\Omega^*) \cdots$

defined on *H*(Ω∗), then

$$
\sigma_n(\Omega^*) > \sigma_n(\Omega).
$$

 (4.11)

Preliminaries and notation Main result

In particular, let

$$
\sigma_1 \leq \sigma_2 \leq \cdots
$$

be the eigenvalues of L, with corresponding eigenvectors ϕ_n defined on H , then

$$
\sigma_n(\Omega) > \sigma_n. \tag{4.12}
$$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

The following lemma states the maximum principle for unbounded domains.

Lemma (4. The Maximum Principle for the Dirichlet problem.)

Let $\Omega \subset \mathbb{R}^N$ *be an open nonempty set, possibly unbounded, with boundary of class C*1, *and assume V satisfy hypothesis* [\(2.2\)](#page-10-0)*. Let f* ∈ *L*2(Ω) *and u* ∈ *H*(Ω,*V*) *be such that [\(4.7\)](#page-35-1) holds. Then*

$$
\min\{\inf_{\partial\Omega} u, \inf_{\Omega} f\} \le u \le \max\{\sup_{\partial\Omega} u, \sup_{\Omega} f\} \tag{4.13}
$$

where $sup = sup$ *ess and* $inf = inf$ *ess.*

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

V. Pérez-García¹ & <u>R. Pardo</u>² [LOCALIZATION PHENOMENA IN](#page-0-0) NONLINEAR SCHRÖDINGER EQS.

Preliminaries and notation Main result

We now consider NLS (2.6) as a bifurcation problem.

Considering λ as a real parameter, we look for pairs

 $(\lambda, u_\lambda) \in \mathbb{R} \times H$

such that u_{λ} is a positive solution of NLS (2.6).

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Set

$$
L:=-\frac{1}{2}\Delta+V,
$$

let σ_1 stand for the first eigenvalue of the eigenvalue problem

$$
\left(-\frac{1}{2}\Delta + V(x)\right)\phi_1 := \sigma_1\phi_1, \qquad x \in \mathbb{R}^N, \qquad \phi_1 \in D(L),
$$
\n(4.16)

and given an open regular enough domain $\Omega \subset \mathbb{R}^N$, let $\sigma_1(\Omega)$ stand for the first eigenvalue of the Dirichlet eigenvalue problem

$$
\left(-\frac{1}{2}\Delta + V(x)\right)\phi_1(\Omega) := \sigma_1(\Omega)\phi_1(\Omega), \quad x \in \Omega, \quad \phi_1(\Omega) \in D(L, \Omega),
$$
\n(4.17)

where the first eigenfunction $\phi_1(\Omega) > 0$.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Let Ω_0 be the interior of the set where *g* vanishes, i.e.

$$
\Omega_0 = \mathsf{int} \{ \pmb{\mathsf{x}} \in \mathbb{R}^{\textstyle \mathsf{N}} : \pmb{\mathsf{g}}(\pmb{\mathsf{x}}) = \pmb{\mathsf{0}} \},
$$

we assume that it it is a finite union of connected sets

$$
\Omega_0 = \bigcup_{1 \leq j \leq J} \Omega_j, \qquad \overline{\Omega_j} \cap \overline{\Omega_j} = \emptyset \quad \text{if } i \neq j
$$

with some Ω_i possibly unbounded.

Let σ_0 be the minimum

$$
\sigma_0 := \min\{\sigma_1(\Omega_j) : 1 \le j \le J\} = \sigma_1(\Omega_j)
$$

and Ω_i is the connected set where the minimum σ_0 is attained. We next prove that the positive solutions diverge pointwise for each *x* in Ω_i .

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Theorem (5. Main result on Localization)

The problem NLS [\(2.6\)](#page-13-0) has a unique positive solution (λ, u_{λ}) if *and only if*

$$
\sigma_1 < \lambda < \sigma_0. \tag{4.18}
$$

Moreover

$$
||u_{\lambda}||_{H}\to 0, \text{ as } \lambda\downarrow \sigma_{1}, \qquad (4.19a)
$$

$$
u_{\lambda}(x) \uparrow \infty, \text{ as } \lambda \uparrow \sigma_0, \qquad \forall x \in \Omega_j, \tag{4.19b}
$$

 Ω_i *is the connected set where the minimum* σ_0 *is attained, i.e.*

$$
\sigma_0=\sigma_1(\Omega_j)\leq \sigma_1(\Omega_i), \qquad \forall i=1,\cdots J.
$$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

(Cont.)

Moreover, if

$$
\sigma_0 = \sigma_1(\Omega_j) = \sigma_1(\Omega_i) \quad \text{with} \quad i \neq j
$$

then

$$
u_{\lambda}(x) \uparrow \infty, \text{ as } \lambda \uparrow \sigma_0, \qquad \forall x \in \Omega_j \cup \Omega_i. \tag{4.20}
$$

We need a technical lemma. An analogous result for bounded domains can be seen in [García-Melián, Gomez-Reñasco, Lopez-Gomez & Sabina 98, theorem 2.4].

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Lemma (6)

Assume there exists a sequence of positive functions $q_i \in L^{\infty}(\mathbb{R}^N)$ *such that*

$$
q_i = 0 \t\t in \t $\Omega_0 = \bigcup_{1 \leq j \leq J} \Omega_j$ (4.21a)
$$

and

Then

 $min_{x \in K} q_i(x) \uparrow \infty$, ∀ *compact* $K \subset \mathbb{R}^N \setminus \Omega_0$. (4.21b) $\sigma_1(\mathbb{R}^N, V+q_i)$ $\uparrow \sigma_0$.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Proof of the lemma 6.

(I) At this step, we assume that Ω_0 is connected. First, let us observe that, thanks to

 $q_i \in L^{\infty}(\mathbb{R}^N),$

for each *i*,

$$
H(V+q_i)=H(V).
$$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

From the monotonicity with respect to the domain,

$$
\sigma_i := \sigma_1(\mathbb{R}^N, V + q_i) \leq \sigma_1(\Omega_0, V + q_i),
$$

from variational definition

$$
\sigma_1(\Omega_0, V + q_i) := \inf_{\psi \in H(\Omega, V)} \frac{\displaystyle \int_{\Omega_0} |\nabla \psi|^2 + (V + q_i) \, \psi^2}{\displaystyle \int_{\Omega_0} \psi^2},
$$

from hypothesis $q_i = 0$ in Ω_0 , and we have

$$
\sigma_1(\Omega_0, V+q_i)=\sigma_1(\Omega_0, V)=:\sigma_0,
$$

therefore

$$
\sigma_1(\mathbb{R}^N, V+q_i) \leq \sigma_0.
$$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Fix any $\varepsilon > 0$ choose

$$
\Omega_0\subset \Omega_0^{-\varepsilon/2}\subset \Omega_0^{-\varepsilon}
$$

such that

$$
\sigma_1(\Omega_0^{\;\varepsilon})<\sigma_0<\sigma_1(\Omega_0^{\;\varepsilon})+\varepsilon.
$$

Set

 $\phi_0^{\varepsilon} > 0$ $\frac{\varepsilon}{0} > 0$ the first eigenfunction associated with $\sigma_1(\Omega_0^{\ \varepsilon}),$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

choose a function $\overline{u} \in D(L)$ such that

$$
\overline{u} = \phi_0^{\varepsilon} \qquad \text{in} \quad \Omega_0^{\varepsilon/2},
$$

$$
\left(-\frac{1}{2}\Delta + V\right)\overline{u} = e^{-|x|^2} \quad \text{in} \quad \mathbb{R}^N \setminus \Omega_0^{\varepsilon},
$$

and $\overline{u} > 0$.

Then

$$
\left(-\frac{1}{2}\Delta+V+q_i\right)\overline{u}=\left\{\begin{array}{ll}\sigma_1(\Omega_0^\varepsilon)\;\phi_0^\varepsilon+q_i\phi_0^\varepsilon,&\text{in}\,\Omega_0^{\varepsilon/2}\\ \\ e^{-|x|^2}+[q_i-(\sigma_0-\varepsilon)]\overline{u},&\text{in}\,\mathbb{R}^N\setminus\Omega_0^\varepsilon\end{array}\right.
$$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

which can be summarize

$$
\left(-\frac{1}{2}\Delta + V + q_i\right)\overline{u} = (\sigma_0 - \varepsilon)\overline{u} + f_i, \qquad x \in \mathbb{R}^N \qquad (4.22)
$$

where

$$
f_i = \begin{cases} \begin{aligned} \left[\sigma_1 (\Omega_0^{\varepsilon}) - (\sigma_0 - \varepsilon) \right] \phi_0^{\varepsilon} + q_i \phi_0^{\varepsilon}, & \text{in } \Omega_0^{\varepsilon/2} \\ \vphantom{\frac{\partial f_i}{\partial \varepsilon}} e^{-|x|^2} + \left[q_i - (\sigma_0 - \varepsilon) \right] \overline{u}, & \text{in } \mathbb{R}^N \setminus \Omega_0^{\varepsilon} \end{aligned} \end{cases}
$$

therefore

$$
f_i > 0 \qquad \text{in} \quad \Omega_0^{\varepsilon/2} f_i > 0 \qquad \text{for any compact set} \quad \mathcal{K} \subset \mathbb{R}^N \setminus \Omega_0^{\varepsilon},
$$

by continuity

$$
f_i\geq 0 \qquad \text{in} \quad \mathbb{R}^N.
$$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Let

ϕ_i be the first eigenfunction associated with σ_i ,

 $0 < \phi_i \in H(V)$. Choosing ϕ_i as a test function in the weak definition of [\(4.22\)](#page-55-0), see [\(4.7\)](#page-35-1) we deduce

$$
\sigma_i \int \phi_i \overline{u} = (\sigma_0 - \varepsilon) \int \phi_i \overline{u} + \int f_i \phi_i \tag{4.23}
$$

consequently

$$
\sigma_i \geq \sigma_0 - \varepsilon,
$$

therefore

$$
\sigma_0 \geq \sigma_i := \sigma_1(\mathbb{R}^N, V + q_i) \geq \sigma_0 - \varepsilon.
$$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

(II) If

$$
\Omega_0=\bigcup_{1\leq j\leq J}\Omega_j
$$

then we only have to realize that, arguing as before for each Ω*j*,

$$
\sigma_i \leq \min_j \sigma_1(\Omega_j, V + q_i) =: \sigma_0.
$$

The reverse inequality is obtained in the same way, changing $Ω₀$ by the set $Ω_i$ where the min is attained.

 \Box

Preliminaries and notation Main result

Proof of theorem 5

From Crandall–Rabinowitz's bifurcation theorem

 $(\sigma_1, 0)$ is a bifurcation point in $\mathbb{R} \times H$

i.e. there is a continuum of positive solutions,

$$
\left(\lambda,u_\lambda\right)\to\left(\sigma_1,0\right)
$$

in particular

$$
||u_{\lambda}||_{H} \to 0 \quad \text{as} \quad \lambda \to \sigma_1.
$$

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Let u_{λ} be a positive solution of equation NLS [\(2.6\)](#page-13-0), differentiating the equation NLS [\(2.6\)](#page-13-0) with respect to λ formally we have

$$
\left(-\frac{1}{2}\Delta + V + \rho g u_{\lambda}^{p-1}\right)\frac{du}{d\lambda} = \lambda \frac{du}{d\lambda} + u_{\lambda}, \qquad x \in \mathbb{R}^N. \quad (4.24)
$$

This is a linear nonhomogeneous problem.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

The uniqueness of the positive eigenfunction, see Lemma [4](#page-40-0) (iv), allow us to consider λ as an eigenvalue of a problem with a nonlinear potential i.e.

$$
\lambda = \sigma_1(\mathbb{R}^N, V + g u_\lambda^{p-1}). \tag{4.25}
$$

The Rayleigh sup-inf characterization of the eigenvalues [\(4.6\)](#page-33-0) set that the eigenvalues are monotone respect to the potential, then as $p > 1$ we have

$$
\sigma_1(\mathbb{R}^N, V + \rho g u_\lambda^{p-1}) > \sigma_1(\mathbb{R}^N, V + g u_\lambda^{p-1}) = \lambda
$$

and the equation [\(4.24\)](#page-59-0) has a solution.

Preliminaries and notation Main result

The Maximum Principle states that

therefore the branch of solutions, while it exists, is

increasing in λ ,

moreover

there are not turning points

and

for each λ in the branch of solutions, there are only one solution, noted by u_{λ} .

> V. Pérez-García¹ & R. Pardo² **LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQS.**

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

By the monotonicity of the eigenvalue respect to the domain, by [\(2.7\)](#page-14-0) and [\(2.8\)](#page-15-0), we have

$$
\lambda = \sigma_1(\mathbb{R}^N, V + gu_{\lambda}^{p-1}) < \min_{1 \leq j \leq J} \sigma_1(\Omega_j, V + gu_{\lambda}^{p-1}) =: \sigma_0,
$$
\n(4.26a)

moreover, by monotonicity with respect to the potential

$$
\lambda > \sigma_1(\mathbb{R}^N, V) =: \sigma_1, \qquad (4.26b)
$$

then the inequality [\(4.18\)](#page-48-0),

$$
\sigma_1 < \lambda < \sigma_0
$$

is a necessary condition.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Fix now λ satisfying

 $\sigma_1 < \lambda < \sigma_0$.

Let

 ϕ_1 be the positive eigenfunction of [\(4.16\)](#page-46-0) associated with the first eigenvalue σ_1 .

For $\varepsilon > 0$ small enough,

 $\varepsilon\phi_1$ is a strictly positive subsolution of NLS [\(2.6\)](#page-13-0).

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Choose a sequence *qi* under the hypothesis of lemma [\(7\)](#page-50-0). Fix some *i* big enough so that

$$
\sigma_i := \sigma_1(\mathbb{R}^N, V + q_i) \geq \sigma_0 - \varepsilon > \lambda.
$$

Set now

 ϕ_i be the positive eigenfunction associated to the eigenvalue σ_i , choose a constant *C* such that

$$
g(C\phi_i)\stackrel{p-1}{\ge}q q_i,
$$

then

 $C\phi_i$ is a strictly positive supersolution of NLS [\(2.6\)](#page-13-0).

The fact that the subsolution is strictly less than the supersolution prove the existence of a strictly positive solution.

Preliminaries and notation Main result

Now, the Rabinowitz's theorem [Rabinowitz 71] implies that the set of solutions

 (λ, u_{λ}) is a continuum unbounded in $\mathbb{R} \times H$,

then

 $||u_{\lambda}||_{H} \rightarrow \infty$ for $\lambda \uparrow \sigma_0$.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Assume Ω_0 is connected. Let

 ϕ_0 be the positive eigenfunction of the eigenvalue problem [\(4.17\)](#page-46-1) for $\Omega = \Omega_0$,

 ϕ_0 is associated with the first eigenvalue σ_0 .

Choose $\varepsilon > 0$ small enough so that

 $u_{\lambda} > \varepsilon \phi_0$ in Ω_0 .

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

Set

$$
\underline{v}=\frac{\varepsilon}{\sigma_0-\lambda}\phi_0,
$$

then

v is a subsolution of the equation for the derivative of the solution with respect to the parameter (4.24) .

Moreover

$$
\underline{v}(x) \uparrow \infty \quad \text{as} \quad \lambda \uparrow \sigma_0, \quad \forall x \in \Omega_0,
$$

as a consequence

$$
\frac{du_{\lambda}}{d\lambda}(x)\uparrow\infty, \text{ as } \lambda\uparrow\sigma_0, \qquad \forall x\in\Omega_0,\tag{4.27}
$$

and the pointwise unboundedness [\(4.19b\)](#page-48-1) is accomplished ending the proof.

V. Pérez-García¹ & R. Pardo² [LOCALIZATION PHENOMENA IN](#page-0-0) NONLINEAR SCHRÖDINGER EQS.

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

If Ω_0 is not connected, set $\sigma_0 = \sigma_1(\Omega_i) = \sigma_1(\Omega_i)$, where the min is attained, we only have to reason on Ω_i and on Ω_i , as we have done in $Ω₀$.

 \Box

Preliminaries and notation Main result

- R. Pardo, Víctor M. Pérez-García, "Localization H phenomena in Nonlinear Schrödinger equations with spatially inhomogeneous nonlinearities: Theory and applications to Bose-Einstein condensates", Physica D: Nonlinear Phenomena, Nonlinear Phenomena in Degenerate Quantum Gases, 238, N. 15, 1352-1361 http://dx.doi.org/10.1016/j.physd.2008.08.020
- J. García-Melián, R. Gomez-Reñasco, J. Lopez-Gomez, J.C. Sabina De Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs, Arch. Rat. Mech. Anal 145, 261 (1998).
- Fi Fraile, José M., Koch Medina, Pablo, López-Gómez, Julián, Merino, Sandro, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear

[Preliminaries and notation](#page-30-0) [Main result](#page-45-0)

elliptic equation, J. Differential Equations, **127**,N. 1, 295–319, (1996)

- López-Gómez, J.;Sabina de Lis, J. C. First variations of H principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs. J. Differential Equations **148**, N. 1, 47–64, (1998)
- **M. G. Crandall, P. H. Rabinowitz, Bifurcation, perturbation** of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., **52**, 161–180 (1973).
- **P. H. Rabinowitz, Some global results for nonlinear** eigenvalue problems, J. Functional Anal. , **7**, 487-513 (1971).

Preliminaries and notation Main result

P. H. Rabinowitz, On Bifurcation From Infinity, J. Diff. Eq., 14, 462-475 (1973).

> V. Pérez-García¹ & R. Pardo² **LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQS.**