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victor.perezgarcia@uclm.es
rpardo@mat.ucm.es


Introduction
Mathematical modelling

Localization phenomena: several examples
Unbounded solutions

Abstract

We study the properties of the ground state of Nonlinear
Schrödinger Equations with spatially inhomogeneous
interactions and show that it experiences a strong localization on
the spatial region where the interactions vanish.
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Abstract

We study the properties of the ground state of Nonlinear
Schrödinger Equations with spatially inhomogeneous
interactions and show that it experiences a strong localization on
the spatial region where the interactions vanish.

Moreover, the parameter λ (chemical potential) exhibits a limited
range of variation.

The experimental generation of Bose-Einstein condensates
(BEC) with ultracold dilute atomic vapors has turned out to be
important for physics. The formation of a condensate occurs
when the temperature is low enough and most of the atoms
occupy the ground state of the system.
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V. Pérez-Garcı́a1 & R. Pardo2 LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQS.
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Nonlinear interactions between atoms in a Bose-Einstein
condensate are dominated by the two-body collisions

Interactions can be made spatially dependent by acting on
either the spatial dependence of the magnetic field or the
laser intensity

It is reasonable to think that a BEC will avoid regions of
large repulsive interactions and prefer to remain in regions
with smaller interactions, the localization phenomenon to
be described in this paper here goes beyond what one
would naively expect.
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We consider the nonlinear Schrödinger equation (NLS)

i
∂ψ

∂t
= −1

2
Δψ + V (x)ψ + g(x)|ψ|p−1ψ, (2.1)

in RN , where p > 1 is a real parameter and g, V ≥ 0 are
continuous non-negative real functions.

V describes an external localized potential acting on the
system satisfying,

V (x) → ∞, as |x | → ∞, (2.2)

and g is a spatially dependent coefficient of the nonlinear term.
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Stationary solutions of Eq. (2.1) are defined through

ψ(x , t) = φ(x) exp (iλt) (2.3)

which leads to

λφ = −1
2

Δφ+ V (x)φ+ g(x)|φ|p−1φ. (2.4)

We are interested in the so-called ground state, which is the the
real, stationary positive solution of the equation (2.4) which
minimizes the energy functional
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E(φ) =

∫
R3

[
1
4
|∇φ|2 + V (x) |φ|2 +

1
p + 1

g(x)|φ|p+2
]
, (2.5)

under a prescribed L2− norm∫
R3

|φ|2dx ,

which represents the number of particles in the condensate.
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We study properties of the positive solution of the following Eq.

− 1
2

Δu + V (x)u = λu − g(x)up, x ∈ RN (2.6)

called ground state, when the interactions vanish on a certain
set of points and where V satisfies (2.2), i.e.

V (x) → ∞, as |x | → ∞.
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Set
ω := {x ∈ RN : g(x) > 0}

and
Ω0 := RN \ ω,

i.e.
Ω0 := int{x ∈ RN : g(x) = 0}, (2.7)

We assume that Ω0 is composed by a finite number of
connected components

Ω0 =
⋃

1≤j≤J

Ωj , Ωi ∩ Ωj = ∅ if i 	= j

and it is assumed that each component Ωj is regular enough.
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We prove in Theorem 6 that if uλ is a positive solutions of NLS
(2.6), then

uλ(x) ↑ ∞, as λ ↑ σ0 ∀x ∈ Ωj ,

where σ0 is the minimum

σ0 := min{σ1(Ωj) : 1 ≤ j ≤ J}, (2.8)

and Ωj is the connected set where the minimum σ0 is attained,
i.e.

σ0 := σ1(Ωj).
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Moreover, if

σ0 = σ1(Ωj) = σ1(Ωi) with i 	= j

then the positive solution diverges pointwise for each

x ∈ Ωj ∪ Ωi .

Related phenomena have been described in the mathematical
analysis of logistic equations for vanishing g in bounded
domains, see

[Garcı́a-Melián, Gomez-Reñasco, Lopez-Gomez & Sabina 98,
Fraile, Medina, López-Gómez & Merino 96,
López-Gómez & Sabina 98].

To consider situations of real physical interest we must move to
unbounded domains.
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Introduction
Mathematical modelling

Localization phenomena: several examples
Unbounded solutions

A “toy” example
Numerical approximations: one dimensional systems
Numerical approximations: a three-dimensional example

− u′′ = λu − g(x)u3, x ∈ (−L,L) (3.1a)

u(L) = u(−L) = 0, (3.1b)

(3.1c)

with

V (x) =

{
0 |x | < L,

∞ |x | > L.
(3.2)

g(x) =

{
g0 |x | < a,

0 |x | > a.
(3.3)
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V. Pérez-Garcı́a1 & R. Pardo2 LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQS.



Introduction
Mathematical modelling

Localization phenomena: several examples
Unbounded solutions

A “toy” example
Numerical approximations: one dimensional systems
Numerical approximations: a three-dimensional example

Now
V (x) = 0.02x2,

and
g0(x) = 1,

g1(x) = e−x2/200,

g2(x) = e−x2/50

(a) maxx u2(x)
(b) W 2 =

∫
x2u2(x)dx/‖u‖L2(RN) g0, g1, g2
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(c) u(x) for ‖u‖L2(RN) = 10, 100, 1000, g(x) = g1(x).
- - - homogeneous interactions and ‖u‖L2(RN) = 1000.
(d) u(x) for ‖u‖L2(RN) = 10.000,40.000 .
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Number of particles ‖u‖L2(RN) against λ for
g(x) = exp(−x2/200), V (x) = 0.02x2.
(b) small ‖u‖L2(RN) when λ approaches the eigenvalue of the
linearized problem.
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Dependence of the number of particles in the ground state
‖u‖L2(RN) on the eigenvalue (chemical potential) λ for
g4(x) = (1 − 0.001x2)+, and V (x) = 0.02x2.
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V (x , y , z) =
1
2

(
x2 + y2 + z2

)
, (3.4a)

g(x , y , z) = g0

[
1 − exp

(
−x2 + y2 + z2

2w2

)]
, (3.4b)

and nonlinear interactions

g‖u‖L2(RN) in the range 103 − 105.
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In this Section we will prove two of the observed phenomena:
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In this Section we will prove two of the observed phenomena:

(i) the existence of a finite range of values of λ,

σ1 < λ < σ0,

where σ0, σ1 will be defined later, and
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In this Section we will prove two of the observed phenomena:

(i) the existence of a finite range of values of λ,

σ1 < λ < σ0,

where σ0, σ1 will be defined later, and

(ii) the unboundedness of the solutions when

λ→ σ0.
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We shall fix the potential V satisfying hypothesis (2.2), i.e.

V (x) → ∞, as |x | → ∞.

Let Ω ⊂ RN be an open nonempty set, possibly unbounded,
with boundary regular enough, let us denote by

H(Ω,V ) :=

{
u ∈ H1

0 (Ω) :

∫
Ω

V u2 < +∞
}
, (4.1)

H(Ω,V ) is the completion of C∞
0 (Ω) in the metric derived from

the norm

‖u‖ :=

(∫
Ω
|∇u|2 + V u2

)1/2

, (4.2)

and H(Ω,V ) is a Hilbert space with the scalar product

〈u, v〉 :=

∫
Ω
∇u∇v + V uv . (4.3)

V. Pérez-Garcı́a1 & R. Pardo2 LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQS.
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Consider the operator L defined by

Lu := −Δu + V u, for u ∈ D(L,Ω) (4.4)

where

D(L,Ω) := {u ∈ H(Ω,V ) : −Δu + Vu ∈ L2(Ω)}. (4.5)

Let us first write the following lemma
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Lemma (1)

Let Ω ⊂ RN be an open nonempty set, possibly unbounded,
with boundary regular enough. If V satisfy hypothesis (2.2),
then the following assertions are true

i) H(Ω,V ) ↪→ L2(Ω) with compact embedding

ii) the operator L defined by Eq. (4.4), has a discrete
spectrum, noted by σ(L,Ω), i.e. σ(L,Ω) consists of
an infinite sequence of isolated eigenvalues
{σn(Ω)} ↑ ∞ with finite multiplicities.
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(Cont.)

iii) Moreover, the Rayleigh sup-inf characterization for
the eigenvalues holds, and in particular the first
eigenvalue, denoted by σ1(Ω), satisfies

σ1(Ω) = inf
ψ∈H(Ω,V )

∫
Ω
|∇ψ|2 + V ψ2

∫
Ω
ψ2

(4.6)

iv) the first eigenvalue is positive, simple with a
positive eigenfunction, φ1(Ω) > 0, and there is no
other eigenvalue with a positive eigenfunction.
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This lemma consists of known results from spectral theory and
Krein-Rutman theorem.

In general,
D(L,Ω) = D(L,Ω,V ),

σn(Ω) = σn(Ω,V ),

φn(Ω) = φn(Ω,V ) · · ·
we will consider a fixed V and we will skip the dependence on
V .
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Let [H(Ω,V )]∗ denote the dual space of all linear and
continuous functionals defined on H(Ω,V ),

Lemma (2. Lax-Milgram lemma)

For any
f ∈ [H(Ω,V )]∗

there exists a unique
u ∈ H(Ω,V )

such that∫
Ω
∇u∇ψ + Vuψ =

∫
Ω

fψ, ∀ψ ∈ H(Ω,V ). (4.7)
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Remark

The above Lemma can be understood in the following way, the
inverse operator

L−1 : [H(Ω,V )]∗ → H(Ω,V )

is well defined and,
thanks to the compact embedding in lemma 1.i),

L−1 : L2(Ω) → L2(Ω) compact.
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Next, we will compare

the eigenvalues defined on Ω

with

the eigenvalues defined in the whole RN .

We will denote by

H, D(L), σn, φn, · · ·

the space, the domain of the operator, the eigenvalues and the
eigenfunctions and so on for the operator L defined on RN .
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Define the Hilbert space

H :=

{
u ∈ H1(RN) :

∫
RN

V u2 < +∞
}
, (4.8)

and the operator L

Lu := −Δu + V u, for u ∈ D(L) (4.9)

where now

D(L) :=
{

u ∈ H : −Δu + Vu ∈ L2(RN)
}
. (4.10)
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Observe that the above lemmas 1, 2 still hold, in particular

H ↪→ L2(RN), with compact embedding if N > 2

and whenever V satisfies hypothesis (2.2).

The elliptic operator L as defined in (4.9) admits a

unique principal eigenvalue in RN , noted by σ1.

This principal eigenvalue is the bottom of the spectrum of L in
the function space H, and it admits an associated positive
principal eigenfunction.
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In the following lemma we collect the monotonicity properties of
the eigenvalues with respect to the domain.

As a consequence, we can compare the eigenvalues defined
on Ω � RN with the eigenvalues defined in the whole RN .

Lemma (3. Monotonicity properties of the eigenvalues with
respect to the domain)

Let
σ1(Ω) ≤ σ2(Ω) ≤ · · ·

be the eigenvalues of L, with corresponding eigenfunctions

φ1(Ω), φ2(Ω) · · ·

defined on H(Ω).
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For a subdomain
Ω∗ ⊂ Ω

with boundary regular enough, let

σ1(Ω
∗) ≤ σ2(Ω

∗) ≤ · · ·

be the eigenvalues of L,
with corresponding eigenfunctions

φ1(Ω
∗), φ2(Ω

∗) · · ·

defined on H(Ω∗), then

σn(Ω
∗) > σn(Ω). (4.11)
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In particular, let
σ1 ≤ σ2 ≤ · · ·

be the eigenvalues of L, with corresponding eigenvectors φn

defined on H, then
σn(Ω) > σn. (4.12)
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The following lemma states the maximum principle for
unbounded domains.

Lemma (4. The Maximum Principle for the Dirichlet problem.)

Let Ω ⊂ RN be an open nonempty set, possibly unbounded,
with boundary of class C1, and assume V satisfy hypothesis
(2.2). Let f ∈ L2(Ω) and u ∈ H(Ω,V ) be such that (4.7) holds.
Then

min{inf
∂Ω

u, inf
Ω

f} ≤ u ≤ max{sup
∂Ω

u, sup
Ω

f} (4.13)

where sup = sup ess and inf = inf ess.
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In particular, if

u ≥ 0 on ∂Ω, and f ≥ 0 in Ω, (4.14)

then

u ≥ 0 in Ω, and (4.15a)

‖u‖L∞(Ω) ≤ max{‖u‖L∞(∂Ω), ‖f‖L∞(Ω)}. (4.15b)
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We now consider NLS (2.6) as a bifurcation problem.

Considering λ as a real parameter, we look for pairs

(λ, uλ) ∈ R × H

such that uλ is a positive solution of NLS (2.6).
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Set

L := −1
2

Δ + V ,

let σ1 stand for the first eigenvalue of the eigenvalue problem(
−1

2
Δ + V (x)

)
φ1 := σ1φ1, x ∈ RN , φ1 ∈ D(L),

(4.16)
and given an open regular enough domain Ω ⊂ RN , let σ1(Ω)
stand for the first eigenvalue of the Dirichlet eigenvalue problem(
−1

2
Δ + V (x)

)
φ1(Ω) := σ1(Ω)φ1(Ω), x ∈ Ω, φ1(Ω) ∈ D(L,Ω),

(4.17)
where the first eigenfunction φ1(Ω) > 0.
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Let Ω0 be the interior of the set where g vanishes, i.e.

Ω0 = int{x ∈ RN : g(x) = 0},
we assume that it it is a finite union of connected sets

Ω0 =
⋃

1≤j≤J

Ωj , Ωi ∩ Ωj = ∅ if i 	= j

with some Ωj possibly unbounded.

Let σ0 be the minimum

σ0 := min{σ1(Ωj) : 1 ≤ j ≤ J} = σ1(Ωj)

and Ωj is the connected set where the minimum σ0 is attained.
We next prove that the positive solutions diverge pointwise for
each x in Ωj .
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Theorem (5. Main result on Localization)

The problem NLS (2.6) has a unique positive solution (λ, uλ) if
and only if

σ1 < λ < σ0. (4.18)

Moreover
‖uλ‖H → 0, as λ ↓ σ1, (4.19a)

uλ(x) ↑ ∞, as λ ↑ σ0, ∀x ∈ Ωj , (4.19b)

Ωj is the connected set where the minimum σ0 is attained, i.e.

σ0 = σ1(Ωj) ≤ σ1(Ωi), ∀i = 1, · · · J.
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(Cont.)

Moreover, if

σ0 = σ1(Ωj) = σ1(Ωi) with i 	= j

then
uλ(x) ↑ ∞, as λ ↑ σ0, ∀x ∈ Ωj ∪ Ωi . (4.20)

We need a technical lemma. An analogous result for bounded
domains can be seen in
[Garcı́a-Melián, Gomez-Reñasco, Lopez-Gomez & Sabina 98,
theorem 2.4].
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Lemma (6)

Assume there exists a sequence of positive functions
qi ∈ L∞(RN) such that

qi = 0 in Ω0 =
⋃

1≤j≤J

Ωj (4.21a)

and

min
x∈K

qi(x) ↑ ∞, ∀ compact K ⊂ RN \ Ω0. (4.21b)

Then
σ1(R

N ,V + qi) ↑ σ0.
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Proof of the lemma 6.

(I) At this step, we assume that Ω0 is connected.
First, let us observe that, thanks to

qi ∈ L∞(RN),

for each i ,
H(V + qi) = H(V ).
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From the monotonicity with respect to the domain,

σi := σ1(R
N ,V + qi) ≤ σ1(Ω0,V + qi),

from variational definition

σ1(Ω0,V + qi) := inf
ψ∈H(Ω,V )

∫
Ω0

|∇ψ|2 + (V + qi)ψ
2

∫
Ω0

ψ2
,

from hypothesis qi = 0 in Ω0, and we have

σ1(Ω0,V + qi) = σ1(Ω0,V ) =: σ0,

therefore
σ1(R

N ,V + qi) ≤ σ0.
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Fix any ε > 0 choose

Ω0 ⊂ Ω
ε/2

0 ⊂ Ω ε
0

such that
σ1(Ω

ε
0 ) < σ0 < σ1(Ω

ε
0 ) + ε.

Set

φ ε
0 > 0 the first eigenfunction associated with σ1(Ω

ε
0 ),
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choose a function u ∈ D(L) such that

u = φ ε
0 in Ω

ε/2
0 ,

(
−1

2
Δ + V

)
u = e−|x |2 in RN \ Ω ε

0 ,

and u ≥ 0.

Then

(
−1

2
Δ + V + qi

)
u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1(Ω
ε

0 ) φ ε
0 + qiφ

ε
0 , in Ω

ε/2
0

e−|x |2 + [qi − (σ0 − ε)]u, in RN \ Ω ε
0
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Introduction
Mathematical modelling

Localization phenomena: several examples
Unbounded solutions

Preliminaries and notation
Main result

which can be summarize(
−1

2
Δ + V + qi

)
u = (σ0 − ε)u + fi , x ∈ RN (4.22)

where

fi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
σ1(Ω

ε
0 ) − (σ0 − ε)

]
φ ε

0 + qiφ
ε

0 , in Ω
ε/2

0

e−|x |2 + [qi − (σ0 − ε)]u, in RN \ Ω ε
0

therefore

fi > 0 in Ω
ε/2

0
fi > 0 for any compact set K ⊂ RN \ Ω ε

0 ,

by continuity
fi ≥ 0 in RN .
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Let

φi be the first eigenfunction associated with σi ,

0 < φi ∈ H(V ).
Choosing φi as a test function in the weak definition of (4.22),
see (4.7) we deduce

σi

∫
φi u = (σ0 − ε)

∫
φi u +

∫
fiφi (4.23)

consequently
σi ≥ σ0 − ε,

therefore
σ0 ≥ σi := σ1(R

N ,V + qi) ≥ σ0 − ε.
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(II) If
Ω0 =

⋃
1≤j≤J

Ωj

then we only have to realize that, arguing as before for each Ωj ,

σi ≤ min
j
σ1(Ωj ,V + qi) =: σ0.

The reverse inequality is obtained in the same way, changing
Ω0 by the set Ωj where the min is attained.
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Proof of theorem 5

From Crandall–Rabinowitz’s bifurcation theorem

(σ1,0) is a bifurcation point in R × H

i.e.
there is a continuum of positive solutions,

(λ, uλ) → (σ1,0)

in particular
‖uλ‖H → 0 as λ→ σ1.
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Let uλ be a positive solution of equation NLS (2.6),
differentiating the equation NLS (2.6) with respect to λ formally
we have(

−1
2

Δ + V + pgu p−1
λ

)
du
dλ

= λ
du
dλ

+ uλ, x ∈ RN . (4.24)

This is a linear nonhomogeneous problem.
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The uniqueness of the positive eigenfunction, see Lemma 4
(iv), allow us to consider λ as an eigenvalue of a problem with a
nonlinear potential i.e.

λ = σ1(R
N ,V + gu p−1

λ ). (4.25)

The Rayleigh sup-inf characterization of the eigenvalues (4.6)
set that the eigenvalues are monotone respect to the potential,
then as p > 1 we have

σ1(R
N ,V + pgu p−1

λ ) > σ1(R
N ,V + gu p−1

λ ) = λ

and the equation (4.24) has a solution.
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The Maximum Principle states that

du
dλ

> 0,

therefore the branch of solutions, while it exists, is

increasing in λ,

moreover

there are not turning points

and

for each λ in the branch of solutions, there are only one
solution, noted by uλ.
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By the monotonicity of the eigenvalue respect to the domain, by
(2.7) and (2.8), we have

λ = σ1(R
N ,V + gu p−1

λ ) < min
1≤j≤J

σ1(Ωj ,V + gu p−1
λ ) =: σ0,

(4.26a)
moreover, by monotonicity with respect to the potential

λ > σ1(R
N ,V ) =: σ1, (4.26b)

then the inequality (4.18),

σ1 < λ < σ0

is a necessary condition.

V. Pérez-Garcı́a1 & R. Pardo2 LOCALIZATION PHENOMENA IN NONLINEAR SCHRÖDINGER EQS.
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Fix now λ satisfying
σ1 < λ < σ0.

Let

φ1 be the positive eigenfunction of (4.16) associated with the
first eigenvalue σ1.

For ε > 0 small enough,

εφ1 is a strictly positive subsolution of NLS (2.6).
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Choose a sequence qi under the hypothesis of lemma (7). Fix
some i big enough so that

σi := σ1(R
N ,V + qi) ≥ σ0 − ε > λ.

Set now

φi be the positive eigenfunction associated to the eigenvalue σi ,

choose a constant C such that

g(Cφi)
p−1 ≥ qi ,

then

Cφi is a strictly positive supersolution of NLS (2.6).

The fact that the subsolution is strictly less than the
supersolution prove the existence of a strictly positive solution.
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Now, the Rabinowitz’s theorem [Rabinowitz 71] implies that the
set of solutions

(λ, uλ) is a continuum unbounded in R × H,

then
‖uλ‖H → ∞ for λ ↑ σ0.
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Assume Ω0 is connected. Let

φ0 be the positive eigenfunction
of the eigenvalue problem (4.17)

for Ω = Ω0,

φ0 is associated with the first eigenvalue σ0.

Choose ε > 0 small enough so that

uλ > εφ0 in Ω0.
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Set
v =

ε

σ0 − λ
φ0,

then

v is a subsolution
of the equation for the derivative of the solution

with respect to the parameter (4.24).

Moreover

v(x) ↑ ∞ as λ ↑ σ0, ∀x ∈ Ω0,

as a consequence

duλ
dλ

(x) ↑ ∞, as λ ↑ σ0, ∀x ∈ Ω0, (4.27)

and the pointwise unboundedness (4.19b) is accomplished
ending the proof.
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If Ω0 is not connected, set σ0 = σ1(Ωj) = σ1(Ωi), where the min
is attained, we only have to reason on Ωj and on Ωi , as we have
done in Ω0.
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