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Abstract

This paper deals with modelling the workpiece temperature field produced during the grinding process. The proposed
model is given in terms of a two-dimensional boundary-value problem where the interdependence among the grinding
wheel, the workpiece and the coolant is described by two variable functions in the boundary condition. An explicit integral
form solution is constructed using the Laplace and Fourier transforms and the Green’s function method.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Designing technological processes such as grinding finishing operations entails to deal with the heating
problem of the piece being ground. During grinding, most of the mechanical energy is transformed into heat,
which is accumulated in the contact zone between the grinding device and the workpiece. The high tempera-
tures reached may cause thermal damage to the workpiece. Therefore, it is of a considerable industrial interest
to understand the heat generation and conduction in order to minimize energy losses and increase the effi-
ciency of subsequent processing.

Fig. 1 illustrates the physical setup under consideration. A large portion of a body, called the workpiece,
moves at a constant velocity vy and gets in contact with a rotating grinding wheel.

It is assumed that both the wheel and the workpiece are rigid. A fluid flows between the wheel and the
workpiece lubricating and cooling the contact surface and removing the ground material. The larger region
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Fig. 1. Grinding setting.

over which the grinding wheel contacts the workpiece is due to the curvature of the wheel. This region is
assumed to be of length 6 > 0 and remains constant with time.

Classical modelling of the grinding problem use coupled systems of partial differential equations (PDE)
[1,2] to calculate the evolution of the interconnected temperature fields in the wheel, the workpiece and the
fluid. In this paper, a simplified mathematical model to study the thermal effects on the workpiece is presented.
Instead of solving the coupled system of PDEs, a solution is found for a boundary-value problem with var-
iable boundary data. The influence of the wheel and the fluid is included into the boundary condition of the
problem.

Most of the literature on thermal aspects of grinding deals with experimental and numerical analysis, see,
e.g., [3-5] among others. Nevertheless, explicit solutions of PDE problems have noticeable advantages over
numerical solutions, such as the possibility to check the correctness of the model and to study the variation
of the solution with the data. Thus, unlike with the widely used numerical methods, an exact, closed form solu-
tion for the workpiece background temperature is obtained. Recent works in the field attempt to find exact
solutions for the temperature in the workpiece surface only [6]. In this paper, we obtain a temperature distri-
bution throughout the whole of the workpiece.

The organization of the paper is as follows. Section 2 is concerned with the physical setting and the math-
ematical problem, stated in abstract terms. In Section 3, a boundary-value problem with variable boundary
data is solved. The Laplace and Fourier transforms are used to find an explicit solution in integral form. Sec-
tion 4 deals with the modelling and explicit solution of a real problem where an intermittent grinding wheel
contacts the cutting zone at regular time intervals. More than forty years ago, the introduction of titanium
alloys over steels in Russian aircraft engine building began to be quite popular. The advantages of these alloys
in terms of corrosion resistance are well-known for the main companies in the sector, see for instance [7]. Sec-
tion 5 describes some numerical simulations for the intermittent grinding of a titanium alloy VT20 [8] work-
piece. These are obtained by numerical integration of the analytical expressions.

Throughout this paper ¥ denotes the Laplace transform and % the Fourier transform [9].

2. Mathematical model

The two-dimensional setting depicted in Fig. 1 is assumed in this section. A mathematical model for heat
transfer within this framework involves the solution of a convection—diffusion equation

0T (t,x,y) = a(0uT(t,x,y) + a}yT(t,x,y)) — 040, T(t,x,y), (1)

where 7(1, x, y) is the workpiece field temperature, « is the thermal diffusivity coefficient and vq4 is the feed speed
of the workpiece. As a requirement of the model the heat conduction occurs in the half-plane —oo < x < +o0,
y=0fort>=0.
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This paper deals with the mixed problems described by Eq. (1) together with the convective boundary
condition

20,T(t,x,0) = b(t,x)(T(t,x,0) — Toy) +d(t,x), —o00<x<oo, t>=0, (2)

describing heat transfer in the grinding zone with thermal conductivity 4, and allowing heat to dissipate into
the ambient air which is at temperature 7., with heat exchange coefficient b(¢, x). The functions b(z,x) and
d(t,x) are to be determined experimentally or by some approximation in each specific setting. The initial con-
dition of the problem is described by

T(0,x,y) =Ty, —o0o<x<oo, yz=0. (3)

Assuming that the initial temperature 7T is equivalent to the ambient temperature T, [2] and considering the
change of variables T= T — T\, one gets a new problem for Eq. (1) with boundary condition

20,T(t,x,0) = b(t,x)T(t,x,0) + d(t,x), —oo<x<oo, t >0, (4)
and initial condition

T(0,x,y) =0, —oco<x<oo, y=0. (5)

3. Explicit integral solution

Let T\(t,x) denote the Laplace transform % of the function
T(taxa')(y):T(laxay)7 (6)
+00
n) = 2x )0 = [ Tere . ™)
0
By applying the Laplace transform to Eq. (1) and taking into account the initial condition (5) and the prop-
erties of this transform, one obtains the problem
O/ T, (t,x) = a(0uT,(t,x) + V*T,(t,x) — vT(t,x,0) — d,T(¢,x,0)) — v4d, T\ (t,x), (8)
7,(0,x) = 0. 9)

The Green’s functions method [10] allows one to find a solution for problem (8) and (9). In order to obtain it,
Eq. (8) is rewritten as follows:

0T (t,x) — a(0uT\(t,x) + V*T,(t,x)) + vad, T\ (t,x) = —a(vT(t,x,0) + 0,T(t,x,0))

+o0
= / O(x — X )F,(1,x")dx/, (10)

where d(x — x') is the Dirac delta distribution centered at x, and

F,(t,x) = —a(vT(t,x,0) +0,T(¢,x,0)). (11)
Substituting the boundary condition (4) into relation (11), one gets

Fo(t,x) = —a(v+ 27'b(1,x))T(t,x,0) + 2'd(t,x)]. (12)
Let T, .(x) be the Laplace transform . of the function

T,(%)(1) = T.(t,), (13)

+00
Toa(x) = LITo(-2)](x) = / To(t,x)e dr. (14)
0

By applying the Laplace transform % to Eq. (10) and taking into account the initial condition (9), one obtains
the ODE

Ty (x) — a(@uTyo(x) + V2T, o(x)) + 040, Ty . (x) = /_ h O(x —x')F, . (x')dx, (15)

o0
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F,.(x) = Z[F.(-,x)](t) = /0 OOF‘,(t,yc)cf“dt. (16)

Let G, (x,x’) be the fundamental solution of Eq. (15), then G, .(x,x’) satisfies
1G, (%, X)) — a(0 G, (%, X) + V? G, . (x,X)) 4+ 140, G\~ (x,x) = 5(x — X). (17)

Regarding G, .(x,x’) as function of x and using the properties of the Fourier transform Z, by applying it
to Eq. (17), one finds,

1Gyo, () — a(= 12 Gy (X)) +V2Gor ) () — 110aGy oy (X)) = e (18)
where
“+o00 )
Grast) = F1Guc ) = [ Guslrd)e d. (19)

Solving Eq. (18) it follows that

I
el[x

GVJL',Z (x/)

T+ a(y* —v?) —iyvg (20)

By applying the inversion theorem for the Fourier transform [9] to (20) the solution of Eq. (17) is obtained,

/ a—1 / 1 e eiXXI —iyx
G (x,x) = 7 [G,,(¥)](x) = n e dy

e \THa(y?—v?) —iyvg

1 +00 eiz(x —X) d 21
"5 ). e @)

By the Green’s function method, one gets the solution of Eq. (15)

Toa(x) = [ T G (6, ) Py () (22)

o0

in terms of G, , expressed by (21) and the function F, . in (16). By applying the inversion theorem for the
Laplace transform [9] to (22), and taking into account (14) and (21), the solution of Eq. (10) is

1 g-+ico
T, = ! Tvr = A7 Tv T i
) = 20 =5 [ e
1 o-+ico +oo 1 +oo eiz(x'fx) dX
=— F.() | =— . dx' |e™dx. 23
2mi g—ico |:/ac ' (x ) <2TC [m T+ a(X2 - VZ) - 1X0d> :| © i ( )
Fubbini’s theorem allows to rewrite (23) in the form
| I feo L1 [otie F,.(x)e"dr
T,(t,x) =— T 2 — : . dx'| dy. 24
( X) 2n /—:x: ¢ |:/oo © (27‘:1 ‘/ofioo T+ a(XZ - Vz) - IXUd> :| * ( )
Let
1 o+ico F‘v I(xl)ert dr
Y(t) = — : 25
O=a5 [ T (25)

which is the inverse Laplace transform of the product of F, , and function (r + a(y* — v?) — iyvg)~". Taking
into account the definition of F, . given by (16) and the property Z[1](z) = z~!, for the constant function
1(¢) = 1, the convolution theorem for the Laplace transform [9] can be applied to (25) leading to

t
(i) = /O Fy( = 5,3 o020 g (26)
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Thus, (24) is transformed into

1 +00 - +oo , t PR
T‘,(t,x) _ E / e inx |:/ el </0 FV(I _ s,x')ef{“wi‘ )—ixva}ts dS) dx/] dy. (27)

By applying the inversion theorem of the Laplace transform to (27) and taking into account (7), it follows that

TU““y):=g_WTKExHOO::E%i/i f(TAaxDerv

[ A 5 B A I )
= 271_[1 e"y{2n / e i [/ el (/ F\,(t - S,x’)e_{"(l —v2)—iyvg}s dS) dxl:| dX} dv. (28)
c—ico —00 —00 0

Fubbini’s theorem leads to

1 t +oo “+oo w y ) 1 c+ioo 5
_ X —x—vqs)iy—ay*s 4. (f— I\ A@VS AVY /
T(t’ x’y) 2n /0 {/—oc |:</—oo © dl{) (27[1 /c—ioo F‘ (t Y )e ¢ dv>:| & } ds’ (29)

where
+OO X/f,\’fl' S 2
/ e(x/fvads)ixfa;('s d)( — gy[e—ax(.y](x/ oy UdS) _ ei( md ) E’ (30)
oo as
and, by the inversion theorem of the Laplace transform and (12),
1 c+ioco
— Fy(t—s,x)e" e dv = 2 [F,(t — 5,)e"™] (y)
2mi c—ioo
1 c+ioo
=5 (—avT(t — 5,x,0) — al 'b(t — 5,x)T(t — 5,x',0)
—aitd(t - s,x’))e“"zse‘y dv
= A(t,5,x,y) + B(t,5,x', ), (31)
where
T(t — ' 0 c+ioo 1 c+ioco )
A(t,s,x',y) = _a(z—;{x,) /C_ix ve? eV dy = —aT(t —s,x,0) [2_751 /C_ioo e (0,e") dv] , (32)
and
c+ioco 5
B(t,5,x,y) = —al " (b(t — 5,X)T(t — 5,x',0) + d(t — 5,x)) <% / e “e"ydv) (33)

The differentiation theorem of parametric integrals applied to (32) yields

1 c+ico )
Alt,5,%,y) = —aT(t — 5,%,0) [ﬁ 3 ( / e “e"ydv>] , (34)

whereas the substitution v = i¢ into the improper integral appearing in (34) gives

1 c+ioo 1 +oo

},2
2 2 ik 1 2as()2 e [T
avseWy dy — —alsally qf — — F e _ v 35
© T e e rerde 2n [e } ) 2n \ as’ (35)

2m J.

o¢}

thus (34) becomes

A(t,s,x,y) :aT(t—s,x,O)(%)<2n_ \/2::)’ (36)

and for (33)

2

B(t,s,%,) = —ai (bt — 5,X)T(t — 5,%,0) + d(t — 5,)) (ezf \ﬁ) . (37)
as
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Therefore, replacing relations (36) and (37) into (31) and taking into account expression (30), one can write
(29) in the form

1
T(t7xvy) = ﬂ
t too 2 e—(x’,_z;.i'd’)z y b(t - S,x’) , d(t _ S,x') )
AT (K%‘f)”’—w@ —f])dx ds,
(38)
whence
1 ! +oo (x’fx—vd.y)z ds
T(t;xa 0) = 7@ |:/ e das (b([ — S,_x’)T(f — S,XI,O) + d([ _ va/))dx/:| el (39)
L Jo oo 5

To solve a specific problem one must specify the functions b and d and then compute, possibly numerically, the
expressions (38) and (39).

4. Particular case: intermittent grinding wheel

To reduce thermal damage, it is assumed that the grinding wheel is equipped with a mechanism that moves
it away from the workpiece surface periodically. So, the interaction between the grinding wheel and the work-
piece takes place in repeated cycles. If H denotes the Heaviside step function

1 atz >0,

0 atz<O,
then the boundary condition functions b(z, x) and d(¢, x) of problem (1), (4), (5), may be given in terms of H as
follows,

d(t,x) = —qf ,()H (6 — x)H (x), (41)

H(z) = (40)

where ¢ is the thermal flux generated by the friction between the grinding wheel and the workpiece, ¢ is the
cutting zone depicted in Fig. 1, and

folt) = iH(ntc +t, — )H (t — nt.), (42)

is the function which describes the times of contact between the grinding wheel and the workpiece during the
whole process. Here, 7, is the length of the time interval during which contact between the grinding wheel and
the workpiece occurs within the nth cycle, and ¢. is the duration time of the nth cycle. This includes the contact
of the grinding wheel with the workpiece, the cooling of the workpiece surface by interaction with a grinding
fluid and the transit of a gap between the wheel and the workpiece surface along the band of contact. Also,

b(t,x) = oaH (—x) + oH (x — 8) + asH (x)H (0 — x)f(¢) + aH (6 — x)H (x)f:(2), (43)

where o is the effective coefficient of heat transfer between the workpiece and the environment and o is the
coefficient of heat transfer between the workpiece and the grinding fluid. Moreover, in (43), if # is the time
during which contact between the workpiece and the grinding fluid takes place in a cycle n, then

f:(t) = iH(ntc +it,+ts— )H(t —nt, — t,), (44)
n=0

is the function which describes the interaction times between the grinding fluid and the workpiece during the
whole process, and

fe(t) = iH((n + )t —)H(t — nt, — t, — t,), (45)

describes the time period in each cycle when there is no contact.
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If due to thermal conduction of metal only the influence of the contact between the wheel and the workpiece
surface is considered, the integral equation (39), in zero approximation, would be given by

t +OO X/*X*L‘ 52
T7O(t,x,0) = —4%:/1 (/ e mt d(t—s x)dx’) ds
0

o s

Cava [ flt—s) /r
=5 T [ efde]ds. (46)

2as

The definition of the error function erf(x) help us to write the definite integral appearing in (46) as

-wﬁ: _2 _/n 0 — X — vgs X+ vgs
[ el ()

so that

t—s) 0 —Xx — vgS8 X + vgs
T0(,x,0) = 99_ [l £ £ . 48
Ex0) =37 | vm 2 ) T\ ) ) E (48)
Similarly, the temperatures field in the remaining domain of the workpiece (38) in zero approximation results
2
t—se4m 0 —x—vgs8 X + vgs
7 21 fl——4 f d . 4
(t,x,y) = 2/1\/_/ 2\/& (er( > +er > as ds (49)

In the next order approximation, when the effects of the grinding fluid and the environment on the heat-con-
ducting path are considered, then the substitution of the zero approximations (48) and (49) into relation (38)
gives for the workpiece temperatures field

oo

T, x,y) = T, x, ) + —— / t / e (l_ J7b(t — s, x))T<0)(t s 0ar]| % (50
s R y y 4TE O - 2as ) ) S )

and, from here, its surface temperature

f oo / —x—vys)?
/ (/ T s )T — 5, ¥, 0)dx’> ds (51)
0 _

- N

TW(1,x,0) = T9(¢,x,0) — Py

Numerical estimations of the improper integrals on variable x’ collected in (50) and (51), respectively, show
that they can be truncated to the range 0 < x’ < §. Therefore, the boundary condition function b(x, ) given
by (43) reduces to

b(t,x) = o fs(t) + afe(1), (52)

where fi(¢) and f(¢) are the temporal aggregate functions in (44) and (45) respectively. In this case, the increase
of temperature along the surface of the grinding zone turns out to be, see (50) and (52),

1 o ¥ —x—vgs)?
AT 0) = g [fle =) +ante =) ([ 700 - sox 00 ar ) £ (53)
0

N

or by (48)
M _
AT (Z‘ X, 0 16n}2 \/7/ sf‘s + OCfe(t S))

0 ey d—x—uv40 X + vq0 )\ do7 ds
[ Sl == )(/ (f< 2ad )+f<2ﬁ))>dx>ﬁ}_
(54)

Relations (53) and (54) give a basis for the development of different computational experiments which intend
to optimize the manufacture process for intermittent grinding wheels.
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5. Numerical results

In Fig. 2, the evolution of the temperature on the surface of the workpiece in zero approximation for dif-
ferent values of x is plotted.

This figure shows how the transient regime is unimportant after a small fraction of time, as it is well-known
for most grinding conditions [2]. From Fig. 2 it is also clear that after four cycles the highest temperature on
the surface is reached in zero approximation. The maximum value for the temperatures field is achieved at
point x =y = 0 located at the rear edge of the grinding zone. As it is pointed also in Fig. 2, the heating of
the workpiece in the opposite sense of the motion of the wheel is rather inappreciable since the conduction
in the direction of the workpiece motion (x) is typically negligible.

In Fig. 3 the evolution of the difference between 7' and TtV is shown for x = y = 0. It is clear from this
figure that the cooling effect on the workpiece due to thermal exchange with the environment is moderated.
This effect should be greater in the case of presence of a cooling fluid.
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Fig. 2. Temporal paths for 7z, x,0) in (48).
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Fig. 3. ATY(£,0,0) in (54).
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For all these simulations the following set of parameters has been used:

a=423x10"°m?/s, vg = 0.53 m/s,
/=13 W/(m K), §=2.663x10""m,
o= 5207 x 10* J/(m* K s), te=1.522x10"3s,
s = 27.29 x 10* J/(m* K s), t,=1272x10"7s,
q=5.89x 10" W/m?, t,=0.0s.

These numbers are calculated using titanium alloy VT20 temperature dependent data extracted from [11].
6. Conclusions

In this paper, a mathematical model for the evolution of the temperature in a workpiece during a grinding
process has been constructed, as a parabolic boundary-value problem in a half-plane. It was shown to reduce
to a system of two integral representations where the input functions, the frictional heat generation and the
heat exchange rate, need to be specified in each application. This solution is meant to be a tool for the control
of the grinding process efficiency. Finally, results for a real case using a workpiece made of titanium alloy
VT20 are presented.
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