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c Dpto. de Fı́sica Aplicada, Universidad Politécnica de Valencia, Spain
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Abstract

This paper deals with modelling the workpiece temperature field produced during the grinding process. The proposed
model is given in terms of a two-dimensional boundary-value problem where the interdependence among the grinding
wheel, the workpiece and the coolant is described by two variable functions in the boundary condition. An explicit integral
form solution is constructed using the Laplace and Fourier transforms and the Green’s function method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Designing technological processes such as grinding finishing operations entails to deal with the heating
problem of the piece being ground. During grinding, most of the mechanical energy is transformed into heat,
which is accumulated in the contact zone between the grinding device and the workpiece. The high tempera-
tures reached may cause thermal damage to the workpiece. Therefore, it is of a considerable industrial interest
to understand the heat generation and conduction in order to minimize energy losses and increase the effi-
ciency of subsequent processing.

Fig. 1 illustrates the physical setup under consideration. A large portion of a body, called the workpiece,
moves at a constant velocity vd and gets in contact with a rotating grinding wheel.

It is assumed that both the wheel and the workpiece are rigid. A fluid flows between the wheel and the
workpiece lubricating and cooling the contact surface and removing the ground material. The larger region
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Fig. 1. Grinding setting.
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over which the grinding wheel contacts the workpiece is due to the curvature of the wheel. This region is
assumed to be of length d > 0 and remains constant with time.

Classical modelling of the grinding problem use coupled systems of partial differential equations (PDE)
[1,2] to calculate the evolution of the interconnected temperature fields in the wheel, the workpiece and the
fluid. In this paper, a simplified mathematical model to study the thermal effects on the workpiece is presented.
Instead of solving the coupled system of PDEs, a solution is found for a boundary-value problem with var-
iable boundary data. The influence of the wheel and the fluid is included into the boundary condition of the
problem.

Most of the literature on thermal aspects of grinding deals with experimental and numerical analysis, see,
e.g., [3–5] among others. Nevertheless, explicit solutions of PDE problems have noticeable advantages over
numerical solutions, such as the possibility to check the correctness of the model and to study the variation
of the solution with the data. Thus, unlike with the widely used numerical methods, an exact, closed form solu-
tion for the workpiece background temperature is obtained. Recent works in the field attempt to find exact
solutions for the temperature in the workpiece surface only [6]. In this paper, we obtain a temperature distri-
bution throughout the whole of the workpiece.

The organization of the paper is as follows. Section 2 is concerned with the physical setting and the math-
ematical problem, stated in abstract terms. In Section 3, a boundary-value problem with variable boundary
data is solved. The Laplace and Fourier transforms are used to find an explicit solution in integral form. Sec-
tion 4 deals with the modelling and explicit solution of a real problem where an intermittent grinding wheel
contacts the cutting zone at regular time intervals. More than forty years ago, the introduction of titanium
alloys over steels in Russian aircraft engine building began to be quite popular. The advantages of these alloys
in terms of corrosion resistance are well-known for the main companies in the sector, see for instance [7]. Sec-
tion 5 describes some numerical simulations for the intermittent grinding of a titanium alloy VT20 [8] work-
piece. These are obtained by numerical integration of the analytical expressions.

Throughout this paper L denotes the Laplace transform and F the Fourier transform [9].

2. Mathematical model

The two-dimensional setting depicted in Fig. 1 is assumed in this section. A mathematical model for heat
transfer within this framework involves the solution of a convection–diffusion equation
otT ðt; x; yÞ ¼ aðoxxT ðt; x; yÞ þ oyyT ðt; x; yÞÞ � vdoxT ðt; x; yÞ; ð1Þ

where T(t,x,y) is the workpiece field temperature, a is the thermal diffusivity coefficient and vd is the feed speed
of the workpiece. As a requirement of the model the heat conduction occurs in the half-plane �1 < x < +1,
y P 0 for t P 0.
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This paper deals with the mixed problems described by Eq. (1) together with the convective boundary
condition
koyT ðt; x; 0Þ ¼ bðt; xÞðT ðt; x; 0Þ � T1Þ þ dðt; xÞ; �1 < x <1; t P 0; ð2Þ

describing heat transfer in the grinding zone with thermal conductivity k, and allowing heat to dissipate into
the ambient air which is at temperature T1, with heat exchange coefficient b(t,x). The functions b(t,x) and
d(t,x) are to be determined experimentally or by some approximation in each specific setting. The initial con-
dition of the problem is described by
T ð0; x; yÞ ¼ T 0; �1 < x <1; y P 0: ð3Þ

Assuming that the initial temperature T0 is equivalent to the ambient temperature T1 [2] and considering the
change of variables T = T � T0, one gets a new problem for Eq. (1) with boundary condition
koyT ðt; x; 0Þ ¼ bðt; xÞT ðt; x; 0Þ þ dðt; xÞ; �1 < x <1; t P 0; ð4Þ

and initial condition
T ð0; x; yÞ ¼ 0; �1 < x <1; y P 0: ð5Þ
3. Explicit integral solution

Let Tm(t,x) denote the Laplace transform L of the function
T ðt; x; �ÞðyÞ ¼ T ðt; x; yÞ; ð6Þ

T mðt; xÞ ¼L½T ðt; x; �Þ�ðmÞ ¼
Z þ1

0

T ðt; x; yÞe�my dy: ð7Þ
By applying the Laplace transform to Eq. (1) and taking into account the initial condition (5) and the prop-
erties of this transform, one obtains the problem
otT mðt; xÞ ¼ aðoxxT mðt; xÞ þ m2T mðt; xÞ � mT ðt; x; 0Þ � oyT ðt; x; 0ÞÞ � vdoxT mðt; xÞ; ð8Þ
T mð0; xÞ ¼ 0: ð9Þ
The Green’s functions method [10] allows one to find a solution for problem (8) and (9). In order to obtain it,
Eq. (8) is rewritten as follows:
otT mðt; xÞ � aðoxxT mðt; xÞ þ m2T mðt; xÞÞ þ vdoxT mðt; xÞ ¼ �aðmT ðt; x; 0Þ þ oyT ðt; x; 0ÞÞ

¼
Z þ1

�1
dðx� x0ÞF mðt; x0Þdx0; ð10Þ
where d(x � x
0
) is the Dirac delta distribution centered at x, and
F mðt; xÞ ¼ �aðmT ðt; x; 0Þ þ oyT ðt; x; 0ÞÞ: ð11Þ

Substituting the boundary condition (4) into relation (11), one gets
F mðt; xÞ ¼ �a½ðmþ k�1bðt; xÞÞT ðt; x; 0Þ þ k�1dðt; xÞ�: ð12Þ

Let Tm,s(x) be the Laplace transform L of the function
T mð�; xÞðtÞ ¼ T mðt; xÞ; ð13Þ

T m;sðxÞ ¼L½T mð�; xÞ�ðsÞ ¼
Z þ1

0

T mðt; xÞe�st dt: ð14Þ
By applying the Laplace transform L to Eq. (10) and taking into account the initial condition (9), one obtains
the ODE
sT m;sðxÞ � aðoxxT m;sðxÞ þ m2T m;sðxÞÞ þ vdoxT m;sðxÞ ¼
Z þ1

�1
dðx� x0ÞF m;sðx0Þdx0; ð15Þ
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where
F m;sðxÞ ¼L½F mð�; xÞ�ðsÞ ¼
Z þ1

0

F mðt; xÞe�st dt: ð16Þ
Let Gm,s(x,x 0) be the fundamental solution of Eq. (15), then Gm,s(x,x 0) satisfies
sGm;sðx; x0Þ � aðoxxGm;sðx; x0Þ þ m2Gm;sðx; x0ÞÞ þ vdoxGm;sðx; x0Þ ¼ dðx� x0Þ: ð17Þ
Regarding Gm,s(x,x 0) as function of x and using the properties of the Fourier transform F, by applying it
to Eq. (17), one finds,
sGm;s;vðx0Þ � að�v2Gm;s;vðx0Þ þ m2Gm;s;vðx0ÞÞ � ivvdGm;s;vðx0Þ ¼ eivx0 ; ð18Þ
where
Gm;s;vðx0Þ ¼F½Gm;sð�; x0Þ�ðvÞ ¼
Z þ1

�1
Gm;sðx; x0Þeivx dx: ð19Þ
Solving Eq. (18) it follows that
Gm;s;vðx0Þ ¼
eivx0

sþ aðv2 � m2Þ � ivvd

: ð20Þ
By applying the inversion theorem for the Fourier transform [9] to (20) the solution of Eq. (17) is obtained,
Gm;sðx; x0Þ ¼F�1½Gm;s;vðx0Þ�ðxÞ ¼
1

2p

Z þ1

�1

eivx0

sþ aðv2 � m2Þ � ivvd

� �
e�ivx dv

¼ 1

2p

Z þ1

�1

eivðx0�xÞ

sþ aðv2 � m2Þ � ivvd

dv: ð21Þ
By the Green’s function method, one gets the solution of Eq. (15)
T m;sðxÞ ¼
Z þ1

�1
Gm;sðx; x0ÞF m;sðx0Þdx0; ð22Þ
in terms of Gm,s expressed by (21) and the function Fm,s in (16). By applying the inversion theorem for the
Laplace transform [9] to (22), and taking into account (14) and (21), the solution of Eq. (10) is
T mðt; xÞ ¼L�1½T m;sðxÞ�ðtÞ ¼
1

2pi

Z rþi1

r�i1
T m;sðxÞest ds

¼ 1

2pi

Z rþi1

r�i1

Z þ1

�1
F m;sðx0Þ

1

2p

Z þ1

�1

eivðx0�xÞ dv
sþ aðv2 � m2Þ � ivvd

� �
dx0

� �
est ds: ð23Þ
Fubbini’s theorem allows to rewrite (23) in the form
T mðt; xÞ ¼
1

2p

Z þ1

�1
e�ivx

Z þ1

�1
eivx0 1

2pi

Z rþi1

r�i1

F m;sðx0Þest ds
sþ aðv2 � m2Þ � ivvd

� �
dx0

� �
dv: ð24Þ
Let
WðtÞ ¼ 1

2pi

Z rþi1

r�i1

F m;sðx0Þest ds
sþ aðv2 � m2Þ � ivvd

; ð25Þ
which is the inverse Laplace transform of the product of Fm,s and function (s + a(v2 � m2) � ivvd)�1. Taking
into account the definition of Fm,s given by (16) and the property L½1�ðzÞ ¼ z�1, for the constant function
1(t) = 1, the convolution theorem for the Laplace transform [9] can be applied to (25) leading to
WðtÞ ¼
Z t

0

F mðt � s; x0Þe�ðaðv2�m2Þ�ivvdÞs ds: ð26Þ
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Thus, (24) is transformed into
T mðt; xÞ ¼
1

2p

Z þ1

�1
e�ivx

Z þ1

�1
eivx0

Z t

0

F mðt � s; x0Þe�faðv2�m2Þ�ivvdgs ds
� �

dx0
� �

dv: ð27Þ
By applying the inversion theorem of the Laplace transform to (27) and taking into account (7), it follows that
T ðt; x; yÞ ¼L�1½T mðt; xÞ�ðyÞ ¼
1

2pi

Z cþi1

c�i1
ðT mðt; xÞÞemy dm

¼ 1

2pi

Z cþi1

c�i1
emy 1

2p

Z þ1

�1
e�ivx

Z þ1

�1
eivx0

Z t

0

F mðt � s; x0Þe�faðv2�m2Þ�ivvdgs ds
� �

dx0
� �

dv

� �
dm: ð28Þ
Fubbini’s theorem leads to
T ðt; x; yÞ ¼ 1

2p

Z t

0

Z þ1

�1

Z þ1

�1
eðx
0�x�vdsÞiv�av2s dv

� �
1

2pi

Z cþi1

c�i1
F mðt � s; x0Þeam2semy dm

� �� �
dx0

� �
ds; ð29Þ
where
Z þ1

�1
eðx
0�x�vdsÞiv�av2s dv ¼F½e�asð�Þ2 �ðx0 � x� vdsÞ ¼ e�

ðx0�x�vdsÞ2
4as

ffiffiffiffiffiffiffi
p
as
;

r
ð30Þ
and, by the inversion theorem of the Laplace transform and (12),
1

2pi

Z cþi1

c�i1
F mðt � s; x0Þeam2semy dm ¼L�1½F mðt � s; x0Þeam2s�ðyÞ

¼ 1

2pi

Z cþi1

c�i1
ð�amT ðt � s; x0; 0Þ � ak�1bðt � s; x0ÞT ðt � s; x0; 0Þ

� ak�1dðt � s; x0ÞÞeam2semy dm

¼ Aðt; s; x0; yÞ þ Bðt; s; x0; yÞ; ð31Þ

where
Aðt; s; x0; yÞ ¼ � aT ðt � s; x0; 0Þ
2pi

Z cþi1

c�i1
meam2semy dm ¼ �aT ðt � s; x0; 0Þ 1

2pi

Z cþi1

c�i1
eam2sðoyemyÞdm

� �
; ð32Þ
and
Bðt; s; x0; yÞ ¼ �ak�1ðbðt � s; x0ÞT ðt � s; x0; 0Þ þ dðt � s; x0ÞÞ 1

2pi

Z cþi1

c�i1
eam2semy dm

� �
: ð33Þ
The differentiation theorem of parametric integrals applied to (32) yields
Aðt; s; x0; yÞ ¼ �aT ðt � s; x0; 0Þ 1

2pi
oy

Z cþi1

c�i1
eam2semy dm

� �� �
; ð34Þ
whereas the substitution m = in into the improper integral appearing in (34) gives
1

2pi

Z cþi1

c�i1
eam2semy dm ¼ 1

2p

Z þ1

�1
e�an2seiny dn ¼ 1

2p
F e�

2asð�Þ2
2

� �
ðyÞ ¼ e�

y2

4as

2p

ffiffiffiffiffi
p
as

r
; ð35Þ
thus (34) becomes
Aðt; s; x0; yÞ ¼ aT ðt � s; x0; 0Þ y
2as

	 
 e�
y2

4as

2p

ffiffiffiffiffi
p
as

r !
; ð36Þ
and for (33)
Bðt; s; x0; yÞ ¼ �ak�1ðbðt � s; x0ÞT ðt � s; x0; 0Þ þ dðt � s; x0ÞÞ e�
y2

4as

2p

ffiffiffiffiffi
p
as

r !
: ð37Þ
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Therefore, replacing relations (36) and (37) into (31) and taking into account expression (30), one can write
(29) in the form
T ðt; x; yÞ ¼ 1

4p

�
Z t

0

Z þ1

�1
e�

y2

4as
e�
ðx0�x�vdsÞ2

4as

s

0
@

1
A y

2as
� bðt � s; x0Þ

k

� �
T ðt � s; x0; 0Þ � dðt � s; x0Þ

k

� �� �
dx0

2
4

3
5ds;

ð38Þ

whence
T ðt; x; 0Þ ¼ � 1

4pk

Z t

0

Z þ1

�1
e�
ðx0�x�vdsÞ2

4as ðbðt � s; x0ÞT ðt � s; x0; 0Þ þ dðt � s; x0ÞÞdx0
� �

ds
s
: ð39Þ
To solve a specific problem one must specify the functions b and d and then compute, possibly numerically, the
expressions (38) and (39).
4. Particular case: intermittent grinding wheel

To reduce thermal damage, it is assumed that the grinding wheel is equipped with a mechanism that moves
it away from the workpiece surface periodically. So, the interaction between the grinding wheel and the work-
piece takes place in repeated cycles. If H denotes the Heaviside step function
HðzÞ ¼
1 at z P 0;

0 at z < 0;

�
ð40Þ
then the boundary condition functions b(t,x) and d(t,x) of problem (1), (4), (5), may be given in terms of H as
follows,
dðt; xÞ ¼ �qf pðtÞHðd� xÞHðxÞ; ð41Þ
where q is the thermal flux generated by the friction between the grinding wheel and the workpiece, d is the
cutting zone depicted in Fig. 1, and
fpðtÞ ¼
X1
n¼0

Hðntc þ tp � tÞHðt � ntcÞ; ð42Þ
is the function which describes the times of contact between the grinding wheel and the workpiece during the
whole process. Here, tp is the length of the time interval during which contact between the grinding wheel and
the workpiece occurs within the nth cycle, and tc is the duration time of the nth cycle. This includes the contact
of the grinding wheel with the workpiece, the cooling of the workpiece surface by interaction with a grinding
fluid and the transit of a gap between the wheel and the workpiece surface along the band of contact. Also,
bðt; xÞ ¼ aHð�xÞ þ aHðx� dÞ þ asHðxÞHðd� xÞfsðtÞ þ aHðd� xÞHðxÞfeðtÞ; ð43Þ

where a is the effective coefficient of heat transfer between the workpiece and the environment and as is the
coefficient of heat transfer between the workpiece and the grinding fluid. Moreover, in (43), if ts is the time
during which contact between the workpiece and the grinding fluid takes place in a cycle n, then
fsðtÞ ¼
X1
n¼0

Hðntc þ tp þ ts � tÞHðt � ntc � tpÞ; ð44Þ
is the function which describes the interaction times between the grinding fluid and the workpiece during the
whole process, and
feðtÞ ¼
X1
n¼0

Hððnþ 1Þtc � tÞHðt � ntc � tp � tsÞ; ð45Þ
describes the time period in each cycle when there is no contact.
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If due to thermal conduction of metal only the influence of the contact between the wheel and the workpiece
surface is considered, the integral equation (39), in zero approximation, would be given by
T ð0Þðt; x; 0Þ ¼ � 1

4pk

Z t

0

Z þ1

�1
e�
ðx0�x�vdsÞ2

4as dðt � s; x0Þdx0
� �

ds
s

¼ q
ffiffiffi
a
p

2pk

Z t

0

fpðt � sÞffiffi
s
p

Z d�x�vds

2
ffiffiffi
as
p

�x�vds

2
ffiffiffi
as
p

e�n2

dn

 !
ds: ð46Þ
The definition of the error function erf(x) help us to write the definite integral appearing in (46) as
Z d�x�vds

2
ffiffiffi
as
p

�x�vds

2
ffiffiffi
as
p

e�n2

dn ¼
ffiffiffi
p
p

2
erf

d� x� vds
2
ffiffiffiffiffi
as
p

� �
þ erf

xþ vds
2
ffiffiffiffiffi
as
p

� �� �
; ð47Þ
so that
T ð0Þðt; x; 0Þ ¼ qa
2k

ffiffiffi
p
p

Z t

0

fpðt � sÞ
2
ffiffiffiffiffi
as
p erf

d� x� vds
2
ffiffiffiffiffi
as
p

� �
þ erf

xþ vds
2
ffiffiffiffiffi
as
p

� �� �
ds: ð48Þ
Similarly, the temperatures field in the remaining domain of the workpiece (38) in zero approximation results
T ð0Þðt; x; yÞ ¼ qa
2k

ffiffiffi
p
p

Z t

0

fpðt � sÞe� y2

4as

2
ffiffiffiffiffi
as
p erf

d� x� vds
2
ffiffiffiffiffi
as
p

� �
þ erf

xþ vds
2
ffiffiffiffiffi
as
p

� �� �
ds: ð49Þ
In the next order approximation, when the effects of the grinding fluid and the environment on the heat-con-
ducting path are considered, then the substitution of the zero approximations (48) and (49) into relation (38)
gives for the workpiece temperatures field
T ð1Þðt; x; yÞ ¼ T ð0Þðt; x; yÞ þ 1

4p

Z t

0

Z þ1

�1
e�

x0�x�vdsð Þ2þy2

4as
y

2as
� k�1bðt � s; x0Þ

	 

T ð0Þðt � s; x0; 0Þdx0

� �
ds
s
; ð50Þ
and, from here, its surface temperature
T ð1Þðt; x; 0Þ ¼ T ð0Þðt; x; 0Þ � 1

4pk

Z t

0

Z þ1

�1
e�
ðx0�x�vdsÞ2

4as bðt � s; x0ÞT ð0Þðt � s; x0; 0Þdx0
� �

ds
s
: ð51Þ
Numerical estimations of the improper integrals on variable x 0 collected in (50) and (51), respectively, show
that they can be truncated to the range 0 6 x 0 6 d. Therefore, the boundary condition function b(x, t) given
by (43) reduces to
bðt; xÞ ¼ asfsðtÞ þ afeðtÞ; ð52Þ

where fs(t) and fe(t) are the temporal aggregate functions in (44) and (45) respectively. In this case, the increase
of temperature along the surface of the grinding zone turns out to be, see (50) and (52),
DT ð1Þðt; x; 0Þ � � 1

4pk

Z t

0

ðasfsðt � sÞ þ afeðt � sÞÞ
Z d

0

T ð0Þðt � s; x0; 0Þe�
ðx0�x�vdsÞ2

4as dx0
� �

ds
s
; ð53Þ
or by (48)
DT ð1Þðt; x; 0Þ � � q

16pk2

ffiffiffi
a
p

r Z t

0

ðasfsðt � sÞ þ afeðt � sÞÞ

�
Z t�s

0

fpðt � s� hÞ
Z d

0

e�
ðx0�x�vd sÞ2

4as erf
d� x� vdh

2
ffiffiffiffiffi
ah
p

� �
þ erf

xþ vdh

2
ffiffiffiffiffi
ah
p

� �� �
dx0

� �
dhffiffiffi

h
p

� �
ds
s
:

ð54Þ
Relations (53) and (54) give a basis for the development of different computational experiments which intend
to optimize the manufacture process for intermittent grinding wheels.
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5. Numerical results

In Fig. 2, the evolution of the temperature on the surface of the workpiece in zero approximation for dif-
ferent values of x is plotted.

This figure shows how the transient regime is unimportant after a small fraction of time, as it is well-known
for most grinding conditions [2]. From Fig. 2 it is also clear that after four cycles the highest temperature on
the surface is reached in zero approximation. The maximum value for the temperatures field is achieved at
point x = y = 0 located at the rear edge of the grinding zone. As it is pointed also in Fig. 2, the heating of
the workpiece in the opposite sense of the motion of the wheel is rather inappreciable since the conduction
in the direction of the workpiece motion (x) is typically negligible.

In Fig. 3 the evolution of the difference between T(0) and T(1) is shown for x = y = 0. It is clear from this
figure that the cooling effect on the workpiece due to thermal exchange with the environment is moderated.
This effect should be greater in the case of presence of a cooling fluid.
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For all these simulations the following set of parameters has been used:
a = 4.23 · 10�6 m2/s,
 vd = 0.53 m/s,

k = 13 W/(m K),
 d = 2.663 · 10�3 m,

a = 5.207 · 104 J/(m2 K s),
 tc = 1.522 · 10�3 s,

as = 27.29 · 104 J/(m2 K s),
 tp = 1.272 · 10�3 s,

q = 5.89 · 107 W/m2,
 ts = 0.0 s.
These numbers are calculated using titanium alloy VT20 temperature dependent data extracted from [11].

6. Conclusions

In this paper, a mathematical model for the evolution of the temperature in a workpiece during a grinding
process has been constructed, as a parabolic boundary-value problem in a half-plane. It was shown to reduce
to a system of two integral representations where the input functions, the frictional heat generation and the
heat exchange rate, need to be specified in each application. This solution is meant to be a tool for the control
of the grinding process efficiency. Finally, results for a real case using a workpiece made of titanium alloy
VT20 are presented.
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