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An optimal control problem for Burgers equation

We consider the inviscid Burgers equation:{
∂tu + ∂x(

u2

2
) = 0, in R× (0, T ),

u(x, 0) = u0(x), x ∈ R (1)

Given a targetud ∈ L2(R)) we consider the cost functional to be minimized
J : L1(R) → R, defined by

J(u0) =

∫
R
|u(x, T )− ud(x)|2 dx, (2)

whereu(x, t) is the unique entropy solution.
We also introduce the set of admissible initial dataUad ⊂ L1(R).
We consider the inverse design problem: Findu0,min ∈ Uad such that

J(u0,min) = min
u0∈Uad

J(u0). (3)
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Main questions

1. Existence of minimizers.We include conditions on the admissible set to
guarantee compactness of minimizing sequences. We can consider

Uad = {f ∈ L∞, supp(f) ⊂ K, ‖f‖L∞ ≤ C} .

2. Uniqueness.A unique minimizer does not exists in general for such prob-
lems. Moreover we can have many local minima.

3. Numerical approximation.

(a) Introduce a suitable discretization for the functionalJ , J∆, the equa-
tions, etc.

(b) Solve the discrete optimization problem: Findu0,min
∆ s.t.

J∆(u0,min
∆ ) = min

u0
∆∈U∆

J∆(u0),

4. Convergence of discrete minimizers when∆ → 0 (conservative monotone
schemes satisfying the discrete one-side Lipschitz condition OSLC).
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Main difficulty: numerical approximation of minimizers

Figure 1: upper figure:u0 (dashed line) anduT . Initialization (dashed line) and initial data
obtained after 30 iterations (solid line) with Lax-Friedrichs (left) , Engquist-Osher (medium),
Roe (right)
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Discrete problem

Assume that we discretize the Burgers equation using one of the convergent
conservative numerical scheme (Lax-Friedrichs, upwind, etc.) and we take

J∆(u0
∆) =

∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )
2, (4)

whereu0
∆x = {u0

j} andud
∆ = {ud

j} are numerical approximations ofu0(x) and
ud(x) at the nodesxj, respectively. For example, we can take

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx,

wherexj±1/2 = xj ±∆x.
Let us introduce an approximation of the spaceUad, U∆

ad constituted by se-
quencesu∆ = {vj}j∈Z for which the function obtained by piecewise constant
interpolationu∆, defined by

u∆(x) = uj, xj−1/2 < x < xj+1/2,

satisfiesu∆ ∈ Uad.
Problem: Findu0,min

∆ such that

J∆(u0,min
∆ ) = min

u0
∆∈U

∆
ad

J∆(u0
∆). (5)



Methods to approximate the gradient

• The discrete approach.

• The continuous approach.
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Solutions of scalar conservation laws

The linear advection equation

∂tu + a∂xu = 0, x ∈ R, t > 0 (6)

wherea is a given constant. For a given initial datum

u(0, x) = u0(x), x ∈ R,

the Cauchy problem is well-defined and the solution is simply

u(t, x) = u0(x− at), t ≥ 0.

The solutionu at timet = t0 is a pure translation of the initial datumu0. In
fact, if we define thecharacteristic linesof (6) as

x′(t) = a, x(0) = x0 ∈ R,

the solutionu satisfies
d

dt
u(t, x(t)) = 0,



Two important properties:

1. Finite speed of propagation.

2. Characteristics allow to define a natural notion of weak solution for such
cases.
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The inviscid Burgers equation

{
∂tu + ∂x(

u2

2
) = 0, in R× (0, T ),

u(x, 0) = u0(x),

Our main objective is to study the main properties of the solutions of this
problem and their numerical approximation.

Characteristics

Let u(x, t) be a smooth solution of the Burgers equation

∂tu + ∂x(
u2

2
) = 0

Then,
∂tu + u∂xu = 0.
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We introduce the characteristics as the integral curvesx(t) of the differential
equation

dx

dt
= u(x, t).

Along these curves the solution is constant since

d

dt
u(x(t), t) = ∂tu(x(t), t) + ∂x(u(x(t), t))

dx

dt
= ∂tu(x(t), t) + ∂x(u(x(t), t))u(x(t), t) = 0.

Therefore
dx

dt
= u(x, t) = u0(x(0), 0),

and the characteristics are straight lines whose slopes depend on the initial
data.
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Note that, for some initial data (even for smooth ones) two different charac-
teristics lines may possibly meet at some timet = t0. In this case, the solution
cannot be continuous fort > t0 and classical solutions will not exist.

Numerical approximation of optimal control problems for conservation laws - C. Castro



Weak solutions

Let u be a smooth solution of Burgers equation and letϕ ∈ C1
0(R× [0, T ))

be a test function. Multiplying the equation ofu by ϕ and integrating we obtain

0 =

∫ ∞

0

∫
R

(
∂tu + ∂x(

u2

2
)

)
ϕ

= −
∫ ∞

0

∫
R

(
∂tϕ +

u2

2
∂xϕ

)
−

∫
R

u(x, 0)ϕ(x, 0).

We adopt this identity as the definition ofweak solution.
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The following characterization of weak solutions is easily proved:

1. u is a classical solution when smooth (C1).

2. u satisfies the Rankine-Hugoniot conditions

[u]Σnt + [u2/2]Σnx = 0

along discontinuitiesΣ.
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If we parametrize the discontinuityΣ with a functions(t) by

Σ = {(t, s(t)), t ∈ (0, T )}

thens(t) must satisfy

s′(t) =
[u2/2](t,s(t))

[u](t,s(t))
.

Weak solutions allows us to determine the physically relevant solution when
characteristics intersect. However, this definition does not provide unicity for
some initial data.
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A situation where characteristics do not fill the domain

In general, the physical relevant solution is obtained by defining a new class
of solutions, known asentropy solutions, for which unicity holds. Entropy
solutions can also be characterized as limits, asε → 0, of solutions of the
Burgers equations with viscosity:{

∂tu + ∂x(
u2

2
) = ε∂xxu, in R× (0, T ),

u(x, 0) = u0(x),
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Numerical approximation of scalar conservation laws

A first example

Consider the advection equation{
∂tu + a∂xu = 0, in R× (0, T ),
u(x, 0) = u0(x).

We introduce a uniform discretization in space and time. We take∆t, ∆x >
0. {

tn = n∆t, n ∈ N
xj = j∆x, j ∈ Z

Our objective is to computeun
j ∼ u(xj, t

n).
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The simplest scheme:

un+1
j − un

j

∆t
+ a

un
j+1 − un

j−1

∆x
= 0,

does not converge!!

Teorema(Lax) A consistent and stable numerical scheme is convergent.
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Consistent schemes

The order of accuracy of a difference scheme is the largest numberp ≥ 1
such that any smooth solutionu and forλ = ∆t/∆x constant, the numerical
scheme evaluated on it provides a rest of the order

O(∆tp+1), as∆t → 0.

A numerical scheme isconsistentif its order of accuracy is at lest1.

The above scheme is consistent.

Stability

A numerical scheme is stable if it satisfies a discrete maximum principle: If
m ≤ u0

j ≤ M for all j ∈ Z thenm ≤ un
j ≤ M for all n ∈ N y j ∈ Z

The above numerical scheme is not stable. To see that we can perform the
von Neumann analysis. We consider solutions of the type

un
j = Aneikj∆x

and we see that the amplification factor is|A| > 1.
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Conservative schemes

∂tu + ∂xf(u) = 0, x ∈ R, t > 0, (7)

u(x, 0) = u0(x). (8)

We assume thatf is aC2 function,u0 ∈ L∞(R) and we set

a(u) = f ′(u).

We set

λ =
∆t

∆x
.

General 3-point explicit difference scheme:

vn+1
j = H(vn

j−1, v
n
j , vn

j+1), ∀n ≥ 0, j ∈ Z, (9)

whereH : R3 → R is a continuous function andvn
j denotes an approximation

of the exact solutionu at the grid point(xj = j∆x, tn = n∆t).
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Definition 1 The above difference scheme can be put in conservation form if
there exists a continuous functiong : R2 → R such that

H(v−1, v0, v1) = v0 − λ[g(v−1, v0)− g(v0, v1)]. (10)

The functiong is called the numerical flux.

If we define
gn

j+1/2 = g(vn
j , vn

j+1)

then, the numerical scheme (9) reads

vn+1
j = vn

j − λ(gn
j+1/2 − gn

j−1/2). (11)

The difference scheme (11) is consistent with equation (7) if

g(v, v) = f(v), ∀v ∈ R. (12)
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Concerning the initial datum (8) we will consider anysuitablediscretiza-
tion. A common choice is to take

vj,0 =
1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx, (13)

wherexj+1/2 = (xj + xj+1)/2.

Finally the approximation by a conservative scheme of (7)-(8) is

vn+1
j = vn

j − λ(gn
j+1/2 − gn

j−1/2), j ∈ Z, n ≥ 0 (14)

v0
j = vj,0. (15)
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The Lax-Wendroff theorem

For a given sequence(vn
j ) we introduce the piecewise constant functionv∆

defined in(0,∞)× R by

v∆(t, x) = vn
j , t ∈ [tn, tn+1), x ∈ (xj−1/2, xj+1/2). (16)

Theorem 2 (Lax-Wendroff) Assume that the difference scheme (11) is consis-
tent with (7) and letv0 = (vj,0) be given by (13). Assume that there exists a
sequence∆x → 0 such that if∆t = λ∆x (with λ constant)

‖v∆‖L∞((0,∞)×R)) ≤ C,

v∆ converges inL1
loc((0,∞)× R)) and a.e. to a functionu

Thenu is a weak solution of (7)-(8).

The above theorem tell us that a difference scheme in conservation form
which converges always converges to a weak solution.
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The main questions now are:

• Find sufficient conditions to convergence.

• Find criteria which ensure that the limit is the unique entropy solution.

• Determine the order of accuracy of the difference scheme.
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Some examples

Lax-Friedrichs scheme

un+1
j − 1

2
(un

j+1 + un
j−1)

∆t
+ v

un
j+1 − un

j−1

∆x
= 0,

which can be put in conservation form with the numerical flux

g(u, v) =
f(u) + f(v)

2
− v − u

2λ
.

In the linear case,q = 1 and this scheme isL2-stable under the CFL condition

|v|∆t

∆x
≤ 1.
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Upwind scheme

un+1
j − un

j

∆t
+ v

un
j+1 − un

j

∆x
= 0, si v < 0,

un+1
j − un

j

∆t
+ v

un
j − un

j−1

∆x
= 0, si v > 0,

In the linear case,q = |aλ| = |ν| and the scheme isL2-stable under the
CFL condition.

Godunov scheme

The Godunov scheme is based on the exact solution of local Riemann prob-
lems. The numerical flux is given by

g(u, v) =

{
minw∈[u,v] f(w), if u ≤ v
maxw∈[u,v] f(w), if v ≤ u

In the linear case, it coincides with the upwind difference scheme.
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Optimization methods

1. Newton method.

2. Gradient methods.

(a) Steepest descent.

(b) Conjugate gradient.

(c) Others (homogenization method, Level sets, etc.)

3. Others (Genetic algorithms, etc.)

Remark. Constraints are included by using Lagrange multipliers.
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Gradient methods

We use the fact that the gradient of a functionalJ provides a local descent
direction.

Let V be a Hilbert space andJ : V → R a smooth cost function. Then
J ′(v) : V → R is linear and

J(v + δv) = J(v) + J ′(v) δv + o(‖δv‖)
= J(v)+ < GradvJ, δv > +o(‖δv‖),

where‖ · ‖ and< ·, · > represents the norm and scalar product onV respec-
tively.

The vectorGradvJ ∈ V is knows as the gradient ofJ in v ∈ V .

In particular, takingδv = −λGradvJ with λ << 1 we have

J(v − λGradvJ)− J(v) = −λ‖GradvJ‖2 + o(λ‖GradvJ‖),

that must be negative ifλ is sufficiently small.

Thus, the following sequence makesJ(vn) to be a decreasing sequence:

vn+1 = vn − λGradvnJ



Descent method with optimal step

• Step 0: Choosev0 ∈ V

• Forn = 1 : n

– Computew = −GradvnJ ,

– Computeλn = argminJ(vn + λw)

– Takevn+1 = vn + λnw

• end

Remark: The choice ofλn requires to solve a one-dimension optimization
problem.
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Computing the gradient

We have to solve a finite dimensional optimización problem which comes from
a suitable discretization of a continuous optimization problem.

In general we have to compute the gradient of a function

Fh(x, uh(x)), x ∈ RN , (discretization of the a functional F)

whereuh(x) satisfies

Ah(x, uh(x)) = 0, (discretization of the fluid equations)

In practice, there are three different method:

1. Finite differences.

2. Adjoint method for the discrete system.

3. Adjoint method for the continuous system.
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1. Finite differences

It consists in computing the partial derivatives ofF which respect to each
one of the free variablesx ∈ RN . In this way,

(GradxFh)i =
Fh(x + αei, uh(x + αei))− Fh(x, uh(x))

α
, α << 1, i = 1, ..., N.

Ah(x + αei, uh(x + αei)) = 0, α << 1, i = 1, ..., N.

where
ei = (0, ..., 0, 1 , 0, ..., 0)

i

Advantages:Easy to implement numerically.

Drawbacks:

1. Choice of the parameterα. It must be sufficiently small but not too small
to avoid numerical errors.

2. Very costly. It requiresN + 1 evaluations of the objective function. In
real applications, it can not be used.
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2. Discrete adjoint

It is like the continuous adjoint method that we show below but applied to
the discrete optimization problem.

Drawbacks:

1. It requires to differentiate the numerical algorithm (automatic differentia-
tion).

2. The equations and their particularities are hidden in the numerical scheme.

3. Continuous adjoint

We compute the gradient of the continuous optimization problem and dis-
cretize it to obtain adescent direction.
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Example (optimal control problem)

Let Ω ⊂ Rn beC2 andω ⊂ Ω an open nonempty subset. We consider the
following system: {

−∆u(x) = g(x)χω(x), enΩ
u = 0, en∂Ω,

(17)

whereχω(x) is the characteristic function of the subsetω.

Problem 1:GivenA ⊂ Ω andh ∈ L2(A), computeg ∈ L2(Ω) such that
u(x)χA(x) = h(x) in A.



In general, this problem has no solution. For instance, ifA is not a subset of
ω a necessary condition is to takeh an harmonic function inA\ω.

Problem 2:GivenA ⊂ Ω andh ∈ L2(A), computeg ∈ L2(Ω) such that
u(x)χA(x) is as close as we want toh(x) in A.

To solve this problem we introduce the functionalJk : L2(ω) → R defined
by

Jk(g) =
1

2

∫
A

|u− h|2dx +
k

2

∫
ω

|g|2dx

and we look for

min
g∈L2(ω)

Jk(g), k suficiently large.

We observe thatJk is a continuous, coercive and convex functional. Thus,
it has a minimizergk.

We now illustrate the adjoint method to compute the gradient ofJk,

grad Jk(g) ∈ L2(ω)

.
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Let us defineδJk the derivative of the cost functionJk in a generic direction
δg. Then,

δJk =

∫
A

(u− h)δu dx + k

∫
ω

gδg dx,

whereδu solves the linearized problem,{
−∆δu(x) = δg(x)χω(x), in Ω
δu = 0, on∂Ω.

(18)

We want to write the expression ofδJk like

δJk = (grad Jk(g), δg)L2(ω) =

∫
ω

grad Jk(g) δg dx

To eliminateδu we introduce the adjoint to the linearized problem{
−∆p = (u− h)χA(x), x ∈ Ω
p = 0, x ∈ ∂Ω,

Multiplying the equations ofδu by p and integrating by parts we obtain∫
ω

δg p = −
∫

Ω

∆δup = −
∫

Ω

δu∆p =

∫
A

(u− h)δu



Therefore,
grad Jk(g) = pχω + kg

and we can write

δJk =

∫
ω

(pχω + kg)δg
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Discrete problem

Assume that we discretize the Burgers equation using one of the convergent
conservative numerical scheme (Lax-Friedrichs, upwind, etc.) and we take

J∆(u0
∆) =

∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )
2, (19)

whereu0
∆x = {u0

j} andud
∆ = {ud

j} are numerical approximations ofu0(x) and
ud(x) at the nodesxj, respectively. For example, we can take

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx,

wherexj±1/2 = xj ±∆x.
Let us introduce an approximation of the spaceUad, U∆

ad constituted by se-
quencesu∆ = {vj}j∈Z for which the function obtained by piecewise constant
interpolationu∆, defined by

u∆(x) = uj, xj−1/2 < x < xj+1/2,

satisfiesu∆ ∈ Uad.
Problem: Findu0,min

∆ such that

J∆(u0,min
∆ ) = min

u0
∆∈U

∆
ad

J∆(u0
∆). (20)



The discrete approach: Differentiable numerical schemes

Assume that the Burgers equation is approximated by a differentiable con-
servative numerical scheme

un+1
j = un

j − λ(gn
j+1/2 − gn

j−1/2), j ∈ Z, n = 0, ..., N.

u0
j = uj,0, λ = ∆t/∆x

where

gn
j+1/2 = g(un

j , u
n
j+1)

and the numerical fluxg(u, v) is differentiable. For example,

gLF (u, v) =
u2 + v2

4
− v − u

2λ
, or gEO(u, v) = u

u + |u|
4

+ v
v − |v|

4



The derivative of the cost functional

J∆(u0
j) =

∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )
2, (21)

is given by

δJ∆ = ∆x

∞∑
j=−∞

(uN+1
j − ud

j )δu
N+1
j , (22)

whereδun
j solves the linearized system

δun+1
j = δun

j − λ
(
∂1g

n
j+1/2δu

n
j

+∂2g
n
j+1/2δu

n
j+1 − ∂1g

n
j−1/2δu

n
j−1 − ∂2g

n
j−1/2δu

n
j

)
= 0,

j ∈ Z, n = 0, ..., N.

If we introduce the following adjoint system

pn
j = pn+1

j + λ
(
∂1g

n
j+1/2(p

n+1
j+1 − pn+1

j ) + ∂2g
n
j−1/2(p

n+1
j − pn+1

j−1 )
)
,

pN+1
j = (uN+1

j − ud
j ), j ∈ Z, n = 0, ..., N.

it is easy to check that

δJ∆ = ∆x
∑
j∈Z

(uN+1
j − ud

j )δu
N+1
j = ∆x

∑
j∈Z

p0
jδu

0
j .



Thus, the gradient ofJ∆ is given byp0
j .
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Lax-Friedrichs

1. Start withu0
∆.

2. Solve{
un+1

j −
un

j−1+un
j+1

2

∆t
+

f(un
j+1)−f(un

j−1)

2∆x
= 0, n = 0, ..., N,

u0
j = u0,j, j ∈ Z,

(23)

3. Solve the adjoint withpT
j = (uN+1

j − ud
j ) pn

j −
pn+1
j+1

+pn+1
j−1

2

∆t
+ un

j

pn+1
j−1−pn+1

j+1

2∆x
= 0, n = 0, ..., N

pN+1
j = pT

j , j ∈ Z,
(24)

4. Find the step of descentα

5. Takeu0
j = u0

j − αp0
j

6. Return to 1
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Algorithm 1:solveBurgers eq. with initial datum{u0
j}k

j=1,...,N → {un
j }

n=1,...,M
j=1,...,N

1 input ∆x, ∆t, {u0
j}j=1,...,N

2 setλ = ∆t/∆x
3 for n = 0(1)M − 1 repeat
4 setun+1

1 = u0
1, un+1

N = u0
N

5 for j = 2(1)N − 1 repeat
6 setun+1

j = un
j + λ(g(un

j , u
n
j+1)− g(un

j−1, u
n
j ))

7 end
8 end

Line Comments
2 λ satisfies the CFL condition.
6 g is the numerical convective flux.

Numerical approximation of optimal control problems for conservation laws - C. Castro



Algorithm 2: solveadjoint eq. with final datum{pT
j }j=1,...,N→ {p0

j}j=1,...,N

1 input ∆x, ∆t, {un
j }j=1,...,N

2 setλ = ∆t/∆x
2 for n = 0(1)M repeat
3 setpn−1

1 = pM
1 , pn−1

N = pM
N ,

4 for j = 2(1)N − 1 repeat
5 setpn−1

j = pn
j + λ(∂1g(un−1

j , un−1
j+1 ) ∗ (pn

j − pn
j+1)

6 +∂2g(un−1
j−1 , un−1

j ) ∗ (pn
j−1 − pn

j ))
7 end
8 end

Line Comments
2 λ satisfies the CFL condition.
6 g is the numerical convective flux.
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Algorithm 3: Discrete approach

STEP 0: initialization
1 input ∆x, ∆t, {u0

j}j=1,...,N , {ud}j=1,...,N

2 setλ = ∆t/∆x

STEP 1: optimization loop
1 input ε
2 for k = 0, 1, ...repeat
3 solveBurgers eq. with initial datum{u0

j}k
j=1,...,N → {un

j }
n=1,...,M
j=1,...,N

4 for j = 1(1)N repeat
5 setpT

j = uM
j − ud

j

6 end
7 solveadjoint eq. with final datum{pT

j }j=1,...,N → {p0
j}j=1,...,N

8 setgk = {p0
j}j=1,...,N ,

9 computeαk

10 set{u0
j}k+1

j=1,...,N = {u0
j}k

j=1,...,N − αk ∗ gk

11 end until ||gk+1|| < ε

Line Comments
1 ε is the tolerance.
9 Compute the descent stepαk arg min.J({u0

j}k
j=1,...,N − αk ∗ gk) .

11 || · || is the Euclidean norm inRN .



The discrete approach: Non-differentiable numerical schemes

Assume now that the Burgers equation is approximated by a non-differentiable
conservative numerical scheme

un+1
j = un

j − λ(gn
j+1/2 − gn

j−1/2), j ∈ Z, n = 0, ..., N.

u0
j = uj,0

where

gn
j+1/2 = g(un

j , u
n
j+1)

and the numerical fluxg(u, v) is non-differentiable. For example,

gUp(u, v) =
1

4
(u2 + v2 − |u + v|(v − u))

In this case non-smooth optimization techniques are necessary.



A proposed linearization (Godlewski-Raviart, 1995),

δg(u, v) =
1

4
((2u + 2v)(δu + δv)− |u + v|(δv − δw))
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The continuous approach in presence of a single shock
Assume thatu(x, t) is a weak entropy solution of Burgers equation with a

discontinuity along a regular curveΣ = {(t, ϕ(t)), t ∈ [0, T ]}, which is Lip-
schitz continuous outsideΣ. In particular, it satisfies the Rankine-Hugoniot
condition onΣ

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

. (25)

Figure 2: SubdomainsQ− andQ+.
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Then the pair(u, ϕ) satisfies the system
∂tu + ∂x(

u2

2
) = 0, in Q− ∪Q+,

ϕ′(t)[u]ϕ(t) = [u2/2]ϕ(t) , t ∈ (0, T ),

ϕ(0) = ϕ0,
u(x, 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.

(26)
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Thegeneralized tangent vector(δu, δϕ) satisfies the following linearized
system (Bressan and Marson, Ulbrich, Godlewski and Raviart, etc.):

∂tδu + ∂x(uδu) = 0, in Q− ∪Q+,
δϕ′(t)[u]ϕ(t) + δϕ(t)

(
ϕ′(t)[ux]ϕ(t) − [uxu]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0, T ),

δu(x, 0) = δu0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = δϕ0,

(27)

with the initial data(δu0, δϕ0).
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Figure 3: Characteristic lines entering on a shock
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Variation of the functionalJ :

J(u0) =

∫
R
|u(x, T )− ud|2dx

δJ =

∫
{x<ϕ(T )}∪{x>ϕ(T )}

(u(x, T )−ud(x))δu(x, T )−
[
(u(x, T )− ud(x))2

2

]
ϕ(T )

δϕ(T ).

Lemma The Gateaux derivative ofJ can be written as

δJ =

∫
{x<ϕ0}∪{x>ϕ0}

p(x, 0)δu0(x) dx+q(0)[u0]ϕ0δϕ0, (28)

where the adjoint state pair(p, q) satisfies the system

−∂tp− u∂xp = 0, in Q− ∪Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0, T )
q′(t) = 0, in t ∈ (0, T )
p(x, T ) = u(x, T )− ud, in {x < ϕ(T )} ∪ {x > ϕ(T )}

q(T ) =
1
2 [(u(x,T )−ud)2]

ϕ(T )

[u]ϕ(T )
.

(29)
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Figure 4: Solutionu(x, t) of the Burgers equation with an initial datum having a disconti-
nuity (left) and adjoint solution which takes a constant value in the region occupied by the
characteristics that meet the shock (right).
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The new initial datum is (δϕ0 > 0)

u0,new
j =

{
u0

j + εδu0
j , if j < ϕ0 or j > ϕ0 + εδϕ0/∆x,

u0
j + εδu0

j + [u0
j ]ϕ0 , if ϕ0 ≤ j ≤ ϕ0 + εδϕ0/∆x.

The main drawbacks of this approach are the following:

1. At any step of the descent algorithm, a numerical approximation of the
position of the shock is required.

2. The first component in(p(x, 0), q(0)) has two discontinuities which are
not at the same place at the discontinuity ofu0. Thus, an iterative gradient
method based on this gradient generates increasingly complex initial data.
Numerical experiments confirm that this actually occurs.

3. A pure displacement of the discontinuity will never be a descent direction
computed by this method.
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The alternating descent method

Let

x− = ϕ(T )− u−(ϕ(T ))T, x+ = ϕ(T )− u+(ϕ(T ))T,

and consider the following subsets ,

Q̂− = {(x, t) ∈ R× (0, T ) such thatx < ϕ(T )− u−(ϕ(T ))t},

Q̂+ = {(x, t) ∈ R× (0, T ) such thatx > ϕ(T )− u+(ϕ(T ))t}.

Theorem 3 Assume that we restrict the generalized tangent vectors(δu0, δϕ0) ∈
Tu0 to those that satisfy,

δϕ0 =

∫ ϕ0

x−
δu0 +

∫ x+

ϕ0 δu0

[u]ϕ0

. (30)

Then, the solution(δu, δϕ) of the linearized system satisfiesδϕ(T ) = 0 and the
generalized Gateaux derivative ofJ in the direction(δu0, δϕ0) can be written
as

δJ =

∫
{x<x−}∪{x>x+}

p(x, 0)δu0(x) dx, (31)



Figure 5: SubdomainŝQ− andQ̂+

wherep satisfies the system{
−∂tp− u∂xp = 0, in Q̂− ∪ Q̂+,
p(x, T ) = u(x, T )− ud, in {x < ϕ(T )} ∪ {x > ϕ(T )}. (32)

Analogously, if we restrict the set of paths inΣu0 to those for which the as-
sociated generalized tangent vectors(δu0, δϕ0) ∈ Tu0 satisfyδu0 = 0, then
δu(x, T ) = 0 and the generalized Gateaux derivative ofJ in the direction



(δu0, δϕ0) can be written as

δJ = −
[
(u(x, T )− ud(x))2

2

]
ϕ(T )

[u0]ϕ0

[u(·, T )]ϕ(T )

δϕ0. (33)
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Numerical experiments

Experiment 1. We first consider a piecewise constant target profileud given
by

ud =

{
1 if x < 0,
0 if x ≥ 0,

(34)

and the timeT = 1. Note that in this case one solution of the optimization
problem is obviously given by

u0,min =

{
1 if x < −1/2,
0 if x ≥ 0.

(35)

This means that the optimal valueu0,min can be attained and the minimum
value ofJ in this case is zero.
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log(J∆) −3 −4 −5 −6 −7
Lax-Friedrichs 14 39 > 1000
Engquist-Osher 26 85 288 > 1000
Roe 18 33 54 114 > 1000
Imposing b.c. 5 6 9 21 > 1000
Alternating descent 3 3 3 Not attained

log(J∆) −3 −4 −5 −6 −7
Lax-Friedrichs 15 49 > 1000
Engquist-Osher 115 673 > 1000
Roe 185 > 1000
Imposing b.c. 5 6 52 440 > 1000
Alternating descent 3 3 3 3 Not attained

Table 1: Experiment 1. Number of iterations needed for a descent algorithm to obtain the
value of log(J) indicated in the upper row, by the different methods presented above. The
upper table corresponds to∆x = 1/20 and the lower one to∆x = 1/80. In both cases
λ = ∆t/∆x = 1/2.
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Figure 6: Experiment 1. Initialization (dashed line) and initial data obtained after 30 iterations
(solid line) with Lax-Friedrichs (upper left) , Engquist-Osher (upper right), Roe (middle left),
the continuous approach imposing a boundary condition on the shock (middle right) and the
generalized tangent vectors decomposition method schemes (lower left). A minimizeru0 of
the continuous functional is given in the lower right figure.



Figure 7: Experiment 1. Log of the value of the functional versus the number of iterations in
the descent algorithm for the Lax-Friedrichs, Engquist-Osher and Roe schemes, the continuous
approach imposing the internal boundary condition on the shock and the alternating descent
method proposed in this article. The upper figure corresponds to∆x = 1/20 and the lower
one to∆x = 1/80. We see that the last method stabilizes in a few iterations and it is much
more efficient when consider small enoughvalues of∆x in order to be able to resolve the shock
sufficiently well.
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We observe the following:

1. Different numerical approximation and descent methods lead to different
solutions.

2. For the first four methods the initial datumu0 we obtain after the iteration
process presents strong oscillations. That is not the case for the alternating
descent method.

3. Numerical methods that ignore the presence of the shock (Lax-Friedrichs,
Engquist-Osher and Roe) descend more slowly than those that take into
account the sensitivity with respect to the shock position (by imposing the
boundary condition on the shock or the alternating descent method).

4. For fixed∆x the alternating descent method stabilizes quickly in a few
iterations. This is due to the fact that the descent direction is computed
for the continuos system and not for the discrete one, and therefore∆x
needs to be small for that computation to be valid at the discrete level as
well.

5. For smaller values of∆x the only method that remains effective is the
alternating descent method. The other methods descent more slowly.
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A flux identification problem for scalar conservation laws

Statement

We consider the 1-d scalar conservation law:{
∂tu + ∂x(f(u)) = 0, in R× (0, T ),
u(x, 0) = u0(x), x ∈ R (36)

Given a targetud ∈ L2(R) we consider the cost functional to be minimized
J : Uad → R, defined by

J(f) =

∫
R
|u(x, T )− ud(x)|2 dx, (37)

whereu(x, t) is the unique entropy solution.
We consider the inverse problem: Findfmin ∈ Uad such that

J(fmin) = min
f∈Uad

J(f). (38)

(James and Sepúlveda, 1999)
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Main questions

1. Existence of minimizers.We include conditions on the admissible set to
guarantee:

• Continuity in some topology (Lucier, 1986)

‖uf (·, t)− ug(·, t)‖L1(R) ≤ t‖f − g‖Lip‖u0‖BV .

• Compactness of minimizing sequences. We can consider

Uad = W 2,∞.

2. Uniqueness.A unique minimizer does not exists in general for such prob-
lems. Moreover we can have many local minima.



3. Numerical approximation.

(a) Introduce a suitable discretization for the functionalJ , J∆, the equa-
tions, etc.

(b) Introduce a finite dimensional subspace ofUad, UK
ad, as the linear

space generated by a set of base functions

UK
ad =< f 1, f2, ..., fK > .

(c) Solve the discrete optimization problem: Findfmin
∆ s.t.

J∆(fmin
∆ ) = min

f∈UK
ad

J∆(f),

4. Convergence of discrete minimizers when∆ → 0 (conservative monotone
schemes satisfying the discrete one-side Lipschitz condition OSLC).
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The discrete problem

Assume that we discretize the conservation law using one of the convergent
conservative numerical scheme (Lax-Friedrichs, Godunov, etc.) and we take

J∆(f) =
∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )
2, (39)

whereu0
∆x = {u0

j} andud
∆ = {ud

j} are numerical approximations ofu0(x) and
ud(x) at the nodesxj, respectively. For example, we can take

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx,

wherexj±1/2 = xj ±∆x.
Let us introduce an approximation of the spaceUad, U∆

ad, as the linear space
generated by a set of base functions

UK
ad =< f 1, f2, ..., fK > .

Problem: Findfmin
∆ such tha

J∆(fmin
∆ ) = min

f∈UK
ad

J∆(f). (40)
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Methods to approximate the gradient

• The discrete approach: differentiable schemes.

• The discrete approach: non-differentiable schemes.

• The continuous approach.

• The continuous approach: The alternating descent method.
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The continuous approach for smooth solutions

Let δJ be the Gateaux derivative ofJ atf in the directionδf . We have

δJ = −T

∫
R

∂x(δf(u(x, T ))) (u(x, T )− ud(x))) dx.

If we assume that

f(s) =
K∑

k=1

αkfk(s)

Then

δJ = −
K∑

k=1

δαkT

∫
R

∂x(δfk(u(x, T ))) (u(x, T )− ud(x)) dx,

and an obvious descent direction is given by

δαk =

∫
R

∂x(δfk(u(x, T ))) (u(x, T )− ud(x)) dx.
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The continuous approach in presence of a single shock

Assume thatu(x, t) is a weak entropy solution of the conservation law with
a discontinuity along a regular curveΣ = {(t, ϕ(t)), t ∈ [0, T ]}. It satisfies the
Rankine-Hugoniot condition onΣ

ϕ′(t)[u]ϕ(t) = [f(u)]ϕ(t) . (41)

Figure 8: SubdomainsQ− andQ+.
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Then

J(f) =

∫
{x<ϕ(T )}∪{x>ϕ(T )}

|u(x, T )− ud|2dx

δJ = −T

∫
{x<ϕ(T )}∪{x>ϕ(T )}

∂x(δf(u))(x, T )(u(x, T )− ud(x))

+

1
2

[
(u(x, T )− ud)2

]
ϕ(T )

[u]ϕ(T )

[∂x(f(u(x, T )))]ϕ(T ).
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The alternating descent method

Let

x− = ϕ(T )− u−(ϕ(T ))T, x+ = ϕ(T )− u+(ϕ(T ))T,

and consider the following subsets ,

Q̂− = {(x, t) ∈ R× (0, T ) such thatx < ϕ(T )− u−(ϕ(T ))t},

Q̂+ = {(x, t) ∈ R× (0, T ) such thatx > ϕ(T )− u+(ϕ(T ))t}.

Theorem 4 Assume that we restrict the variationsδf to those that satisfy,

[δf(u(x, T ))]ϕ(T )dt = 0. (42)

Then, the solution(δu, δϕ) of the linearized system satisfiesδϕ(T ) = 0 and the
generalized Gateaux derivative ofJ in the direction(δu0, δϕ0) can be written
as

δJ = −
∫
{x<ϕ(T )}∪{x>ϕ(T )}

∂x(δf(u))(x, t)(u(x, T )− ud(x)) dx, (43)
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Figure 9: SubdomainŝQ− andQ̂+

Numerical experiments

Experiment 1. We first consider a piecewise constant initial datumu0 and
target profileud given by

u0,min =

{
1 if x < −1/2,
0 if x ≥ 0.

(44)



ud =

{
1 if x < 0,
0 if x ≥ 0,

(45)

and the timeT = 1.

u0 ud andu(x, T ) at initialization
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f(u) = α1u + α2u
2 + ... + α6u

6

∆x = 1/20



∆x = 1/40



parameters α1 α2 α3 α4 α5 α6

Lax-Friedrichs −1.6171 0.9090 0.1985 0.2527 0.2472 0.2265
Roe −1.0845 0.6545 −0.1473 −0.0725 −0.0398 −0.0243
Continuous −0.8162 0.5305 −0.3393 −0.2680 −0.2222 −0.1901
Alternating −1.0499 0.6524 −0.1520 −0.0729 −0.0354 −0.0159


