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1. PHASE FIELD MODEL EQUA-
TIONS

& Stefan’s Problem ( solid-liquid)

e The evolution of the temperature ,

u(t,x), of the point
v e QCRY at timet

of a substance which may appear in two different phases.

e The evolution of the interphase T'.

['(t) = {x € Q such that u(t,z) = 0},
The liquid phase is given by:

0y = {z € Q such that u(t,xz) > 0}



The solid phase is given by:
Oy = {z € Q such that u(t,z) < 0}.

Enthalpy method o H-method:

balance heat 1s given by the diffusion equation

0
aH(u) = kAu (0.1)

with k > 0, diffusivity constant and
[
H(u) =u+ 5% enthalpy function.

where [ > 0, latent heat



e © 15 the known function, associated to the change phase

This step function implies that we consider the linear
interphase set I'.

e But, the Stefan’s model can not explain some phenomenons
which appear in the equilibrium (supercooling),

so we have to consider the interface set is not linear.
e [f we consider a plane region of interface of width &

o e have a new unknown function @, instead the step func-
tion of Stefan’s model.



Figure 1: Step function of change phase,p



& Interphase plane (non linear). Phase field func-
tion or Order parameter

e o(t,x) is the known function, associated to the change phase,
Phase field function or Order parameter,

@ 1s scalar function depends on time t and the position
x and take different values in two different phases.

ot,r): R™ x Qr— R
is local average of phase ( solido - liquid ).

From Landau-Ginzburg’s theory, the free energy of sys-



tem s given by

1 1
R = [GEToP+ 5~ 1P 2uglds (02
e The equilibrium equation. Euler-Lagrange

The system is in equilibrium if (u, @) satisfies:

0 = &Ap +35(p —¢°) +2u
{O Y (0.3)

together with the boundary conditions.



& Phase field equations. Landau-Ginzburg

e The evolution of ¢ and u 1s given by the parabolic system

_ _ - +
{ Tor = wAp — f(p)+2u inQx IR (0.4)

uy + %got kA in Q x IRT

e + BOUNDARY CONDITIONS
e + INITIAL CONDITIONS



o u(x,t) = temperature of point x € Q) at time t.
e o(x,t) = order parameter or phase field.

e () is an open and bounded set in RN, N > 1, with reqular
boundary.

o f(p) is typically (¢ — ).

o [ and k = are positive constants assoctated to latent heat
(1) and thermal diffusivity (k).

o7 and w = are positive parameters related to time and
length scales.

o w = w(§) with & width of interface.



& Phase Field in Biology/Industrial

e The phase-field can be seen as the density of bacterial col-
lony or the mass of growing tumor.

Analogously, the diffusion field an stand for the density of
nutrient. [13]

We show that this phase-field approach is suitable to de-
scribe homogeneous as well as heterogenous nucleation start-

ing from several general hypotheses.

o Quantitative phase-field modeling of dendritic growth in



two and three dimensions [23]

e The phase-field can be see the dynamics of phase separation
and coarsening of mixtures of three or more components.

In this case de function u(¢, z) denote the con-
centration of the point x at time ¢, of one the com-
ponents of the mixture.



2. ASYMPTOTIC BEHAVIOUR
FOR SMALL WIDTH OF INTER-
FACE ¢.

& One-dimensional semilinear parabolic system = Phase
Field model

.

Tor = W — flo)+2u, x € (a,b)
up + %gat = x € (a,b)
Ja) = @) =0
p(0,2) = @o(r) € H'(a,b)
| u(0,2) = w(z) € L*(a,b)

o A substance which may appear in different phases



o () =3(0*— ) (in two different phases)
u(t, ) = temperature of the point x at time t
t

e o(t,x) = is the phase field function or order parameter,

( local phase average).
o [ = latent head, k = thermal diffusivity.
e T = time scale.
o w = length scale (w = w(§), & =interface width).

o G. Caginalp 1986, 1990 and 1991, P.C. Fife 1988 and
1990, O.Penrose 1990.



ow=_¢v= u+%90 = enthalpy function and £ = interface

width.

& Previous Results. Asymptotic behaviour of the
solutions (¢*, v%) of the system ( two different phases)

p

= &0 — 3 — ) —lp+2v, © € (a,b)
kvxx o %(Px:va T € (CL, b)
©'(b) =0
V(b)) =0

(0.6)



e Metastable Solutions (Nor equilibrium points. Nor en-
ergy minima. But

e Have a Slow Evolution (using Energy methods (Cahn-
Hilliard , Cahn-Morral system [4, 16]) (Jimenez-Casas[18,
20/, Jimenez-Casas-Rodriguez-Bernal [19])

o u(t,z) = the concentration of the point x at time t, of one
the components of the mizture.

o We consider the dynamics of phase separation and coars-
ening of mixtures of three or more components.



& Asymptotic behaviour of the solutions (¢°,v%) of
the system

(Tt = e — Gl) —lp+2v, z € (a,b)
vy = kv, — %gpm, x € (a,b)
p'a) = ¢(b)=
\ v(a) = v(b)=0 (07)
ot (0,z) = @5(x) € H'(a,b)
| 80,z v§(z) € L(a,b)
when & ~ 0.

e G'(¢) = general density function, instead 1(¢® — )

e G >0 with Ge(C?



e G has only finitely many zeros, G71(0) = {21, .., Zm }

(corresponding to the states or phases of the system).

e G (z)>0,i=1,..,m (in this points G take the minimum.)

o for initial data (gpg, vé), where gpg ~ z; except at the transi-

tion points, and vg ~ %cpg.

e Metastable Solutions( Nor equilibrium points. Nor en-
ergy minima,)

e Have a Slow Evolution



& The Normalized Energy.
Lema 0.1. The energy functional defined by

b ¢2 b
Fip.o) = [ (et +Glolde+ [ Gu—eide (09

is a Lyapunov functional for the system (0.7) in H'(a,b) x
L*(a,b).

In particular we have that

%Ff(éﬁga o)+ (rllgf P+ dlll(=2) "ol =0 (0.9)



o Fr(p,v) in (0.8) has a shallow valley of energy as £ <<
1. (Cahn-Hilliard, Cahn-Morral system [4, 16]).

e For initial data in such region little energy s left to be
disstpated and thus this translates into a slow evolution in
time

e Transitions (p,v)=p ~ z and v ~ i%@

© with large gradients on small transition intervals

0 < Fe(¢i(t,2), v(t, @) < Fe(*(0,2),v%(0,2)) < h(§),€ << 1



Definition 1. N, m-transition

A N, m-step with transition points,

yi,j €41,2,, N} " [a,b] — {z,i=1,...,m},

o = Zif{l i X1, where X denotes the characteristic function
of a set, with

]Z‘m[j:@,ifi%j,i1Uj2...U]j\;+1: [a,b]

(8(]1) M 8(12) M 8(IN+1)) M (CL, b) = {yj,j = 1, PN N}
ifN>m-—1,zpr=2,7=1,2 N+1—m)

A N, m-transition function is any function in H'(a,b), which
is close to a N, m-step in L(a,b).



Two phases Infinite number of phases

Figure 2: Density function for two phases or m phases




& Rescaled Energy Functional

o If liminfe_o Fe(g5,v5) = O(€2), then
gpg =z 0—1 and vg = :I:ézi.

o If we used O(§) = instead, we can include a large class of
functions (¢, v§) [4].[16].
o Ve = —Fg Rescaled Energy Functional

l b
Vilip.v) = Bele) + 52 / o~ o

with

B =[S+ taele. ow



Lema 0.2. If {¢*} C H%a,b), such that o~ — "
LY(a,b) when € — 0, and ¢" a function N, m-step, then:

lim inf E¢[¢®] > = ZH* zi+1)— H*(z)=C(N,m)

{—0%

l\JI»—l

with H*(s) = [

o H(r)dr and H(s) = |2G(s)|2.



3. SLOW MOTION FOR MORE
OF TWO DIFFERENT PHASES

o 0 = N, m—step function.
vi,Jj = 1,.., N are the transition points
r is such that (y; — r,y; +r) C (a,b) are disjoint, with
0<C<r.

e Initial data = N, m-transition ([16]).

o Ve show an estimate on the norm of this solution in the
product space L*(a,b) x H Y(a,b).
Proposition 1. We assume that the initial data (o5(), v5 ()
is close to the structure of NV, m-transition, i.e.

i) limg_g gpg(:c) = "(z) in L(Q).(¢" is N, m—step function)



i) Felph] < C(N,m)+ 1h(€), with ER(E) — 0 as € — 0.
i) 1 [, |35 — b Pdr < Eh(g).

Then, there exits C4, Cy positive constants independent of of
¢, such that the solution (¢, v¢) satisfies

T b C
/0 /[(@5)24—‘(—A)_l(vf)’2]dxdt§Cl(gh(€)+€e—?)

for & sufficiently small, and we can choose T' such that

Cy
C)(Eh(E) + e F)

In particular, if h(§) = 036_%, then

T >

C
T > Cye€,C; > 0,i = 3,4,



& Slow motion when 7 is independent of interface
width &.
o We assume that the initial data (gpg(a:),vg(x)) is close to

the structure of N, m-transition.

o The initial structure of N, m-transition solution, is pre-
served,for a time scale of length T with T" > Me% ,
Teorema 0.3. We assume that the initial data (gpg(x), vg(:ﬁ))
satisfies the hypotheses in Proposition 1, i.e.

i) lime__o @5(x) = @ (x) in LY Q). (¢° is N, m—step func-
tion)

i) Eelg) < C(N,m) + Sh(E), with ER(E) — 0 as & — 0.
iii) 1 [ 1205 — b Pdx < €h(e).

Then, for any M > 0



i) lime_—g SUPro<i<— M HSOg(t) - SOOHLl = 0.

h(€)+e_%
i) lime o suppe  u ) 1308(t) — ()| 12 = 0.
h(€)+e €
iii)  limeosupc My 120(t) — @l ;2 = 0.
hE)+e €

In particular, if h(§) = ke € for some k, then

w) lime_psup ¢ let(t) — @Y1 = 0.
0<t<Me?

v) limg_osup ¢ 7)) = @ )]z = 0.
0<t<Me¢

vi) lime_psup ¢ IF(t) — O = 0.
0<t<Met



& Metastable solutions for the thin-interface limit

o Now we study the thin-interface limat, this 1s, we consider

now T = &2 together with w = £2, where ¢ (interface width)
goes to zero.

e In this case, we consider the initial datum @y very closed
to the N, m — transition structure.
This 1s, we assume that
Eelef] < C(N,m) + $h(€), with h(¢)
such that E1h(€) — 0 as £ — 0.
(instead (&) — 0 as & — 0 with T independent of £.)

e We prove that the wnitial structure of N, m — transition
solution, 1s preserved for a time scale of length T with



T > MEYWeCE for any positive constants M, 6,
&
(instead T > Me¥< ).

o Thus, in this case we prove the solutions is preserves during
an tnterval of time smaller than the above case.



Teorema 0.4. We assume that the initial data (py(z), vg(x))
satisfy:

i) lime_o @§(z) = () in LY(Q).

ii) Eelpg] < C(N,m) + 1h(€), with € 1h(€) — 0 as € — 0.
i) lf ‘QUO h 900)’26137 < &h(§).

Then for any M > 0,0 > 0 we have

ere g o [l9t() = @l =0,

i) limg_osup
hE)te

. . 2 .

i) lime SUP,, wehd 1505(t) — (t)|| 12 = 0.

hE+e &
Melto H%Ug(t) — @l =0.
- C

iii)  lime_g SUp, .

h(E)te §



In particular, if h(§) = ke € for some k, then

v)  lime_, S(t) — ¢ =0.
N = O

) ey e R - 0l
vi) lime_psup ¢ |IFE(E) — @1 = 0.

0<t<MEMHIe €



4. METASTABLE SOLUTIONS FOR
EE(Z)I\I/\IILINEAR DIFFUSION PROB-

& Asymptotic behaviour of the solutions (¢°,v%) of
the system

2

() € W (a,b)
"US(ZU) € L*(a,b)

Tor = (lplPP00)e — G'(9) = lp + 20, x € (a,b)

vy = kv, — %gpm, r € (a,b)
) o) = )=
V'(a) = V'(b)=0

0*(0, )
v4(0, )
(0.11)

p > 2, when & ~ 0.



Teorema 0.5. We assume that the initial data (py(z), vg(x))
satisfies the hypotheses in Proposition 1, i.e.

i) lime g gpg(x) = (z) in LP(Q). (©° is N,m—step func-
tion)

i) Edigf] < CIN, m, p)+5h(€), with € 1h(¢) — 0 as€ — 0.
iii) 1 [}, 135 — g 2dz < &7 h(E).

Then, for any M > 0

) Timeasupy, e 650 =@l = 0.
he+e €

) limge_ SUP g MED 1208(t) — S(t)|| 2 = 0.
h(€)+e €

i) limg_osup welr 1208 (t) — %)) ;2 = 0.
—

{0<t<
h&)+e &



In particular, if h(§) = ke € for some k, then

) lime_osup ¢ l¢tt) ="l =0.
0<t<MEL-Pel

o) lmegsup o [Pf(t) = of(0)] 2 = 0.
0<t<Méel—peé
vi) limg—osup ¢ |35 = ¢l =0.

0<t<MEL-Pe €

with Ee(p) = [, Sle.l? + 75 Glp))da.

b b
o Fe(p,0) = [[(SlonlP + G(o))da + L [ (Gv — ¢)?da
Lyapunov functional for the system (0.11) in W'P(a,b) x
L*(a,b).



b
¢ Ve(ip,v) = grFelp,v) = Bel) + gelr [ (v — )2da



& Numerical experiments

In this section we solve the phase-field equations using the
Runge- Kutta

Fvolution of phase-field for two phases (m =2)

We consider two phases associated to the values +1 and
—1.

With this experiments we note that if we consider the initial
conditions for o taking two values +1 and —1 with N =4

transitions points, this initial structure is conserved for a
large interval of time.

We note also the length of interval of time is decreasing
when the number of transitions points N s creasing.

This is if we constder N > 4 then the slow-motion of this



mitial structure structure 1s less than N = 4.



N=16 transitions




Figure 3: Evolution of phase field for two phases, (time, Phase-field)



e [volution of phase-field for more than two phases m =7

In this case we consider m =7

We note that the solutions with this structure has a slow-
motion, this is this initial structure is conserved for a large
interval of time.



Figure 4: Evolution of phase field for more than two phases, (time, Phase-field)
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