Seminarios CADEDIF U.C.M. Madrid, 30 Abril 2009 ASYMPTOTIC BEHAVIOUR FOR SMALL WIDTH OF INTERFACE IN PHASE-FIELD MODEL ANGELA JIMÉNEZ-CASAS Grupos Dinámica No Lineal y CADEDIF Universidad Pontificia Comillas de Madrid. Universidad Complutense de Madrid

1. PHASE FIELD MODEL EQUA-TIONS.

Interphase plane. Phase field function.

Phase field equations. Landau-Ginzburg.

2. ASYMPTOTIC BEHAVIOUR FOR SMALL WIDTH OF INTERFACE. The normalized energy.

Metastable solutions.

- 3. SLOW MOTION FOR MORE OF TWO DIFFERENT PHASES. τ is independent of interface width ξ
- $\tau=(\xi)^2$ thin-interface limit
- 4. METASTABLE SOLUTIONS FOR NONLINEAR DIFFUSION PROBLEM

1. PHASE FIELD MODEL EQUA-**TIONS**

♣ Stefan's Problem (solid-liquid)

• The evolution of the temperature, $u(t, x)$, of the point $x \in \Omega \subset \mathbb{R}^N$ at time t

of a substance which may appear in two different phases.

• The evolution of the interphase Γ .

 $\Gamma(t) = \{x \in \Omega \text{ such that } u(t,x) = 0\},\$

The liquid phase is given by:

$$
\Omega_1 = \{ x \in \Omega \text{ such that } u(t, x) > 0 \}
$$

The solid phase is given by:

 $\Omega_2 = \{x \in \Omega \text{ such that } u(t,x) < 0\}.$

Enthalpy method o H-method:

balance heat is given by the diffusion equation

$$
\frac{\partial}{\partial t}H(u) = k\Delta u \tag{0.1}
$$

with $k > 0$, diffusivity constant and $H(u) = u +$ l 2 φ enthalpy function.

where $l > 0$, latent heat

- φ is the known function, associated to the change phase This step function implies that we consider the linear interphase set Γ.
- But, the Stefan's model can not explain some phenomenons which appear in the equilibrium (supercooling), so we have to consider the interface set is not linear.
- If we consider a **plane** region of interface of width ξ
- We have a new unknown function φ , instead the step function of Stefan's model.

Figure 1: Step function of change phase, φ

♣ Interphase plane (non linear). Phase field function or Order parameter

• $\varphi(t, x)$ is the known function, associated to the change phase, Phase field function or Order parameter,

 φ is scalar function depends on time t and the position x and take different values in two different phases.

 $\varphi(t, x): \mathbb{R}^+ \times \Omega \longmapsto \mathbb{R}$

is local average of phase (**solido** - liquid).

From Landau-Ginzburg's theory, the free energy of sys-

tem is given by

$$
F_u(\varphi) = \int \left[\frac{1}{2}\xi^2(\nabla\varphi)^2 + \frac{1}{8}(\varphi^2 - 1)^2 - 2u\varphi\right]dx\qquad(0.2)
$$

• The equilibrium equation. Euler-Lagrange

The system is in equilibrium if (u, φ) satisfies:

$$
\begin{cases}\n0 = \xi^2 \Delta \varphi + \frac{1}{2} (\varphi - \varphi^3) + 2u \\
0 = \Delta u\n\end{cases}
$$
\n(0.3)

together with the boundary conditions.

♣ Phase field equations. Landau-Ginzburg

• The evolution of φ and u is given by the parabolic system

$$
\begin{cases}\n\tau \varphi_t = w \Delta \varphi - f(\varphi) + 2u & \text{in } \Omega \times I\!\!R^+ \\
u_t + \frac{l}{2} \varphi_t = k \Delta u & \text{in } \Omega \times I\!\!R^+ \n\end{cases} (0.4)
$$

- \bullet + BOUNDARY CONDITIONS
- \bullet + INITIAL CONDITIONS
- $u(x, t) \equiv$ temperature of point $x \in \Omega$ at time t.
- $\varphi(x,t) \equiv$ order parameter or phase field.
- Ω is an open and bounded set in $\mathbb{R}^N, N \geq 1$, with regular boundary.
- $f(\varphi)$ is typically $\frac{1}{2}(\varphi^3 \varphi)$.
- l and $k \equiv$ are positive constants associated to latent heat (*l*) and thermal diffusivity (k) .
- τ and $w \equiv$ are positive parameters related to time and length scales.
- $w = w(\xi)$ with ξ width of interface.

♣ Phase Field in Biology/Industrial

• The phase-field can be seen as the density of bacterial collony or the mass of growing tumor.

Analogously, the diffusion field an stand for the density of nutrient. [13]

We show that this phase-field approach is suitable to describe homogeneous as well as heterogenous nucleation starting from several general hypotheses.

• Quantitative phase-field modeling of dendritic growth in

two and three dimensions [23]

• The phase-field can be see the dynamics of phase separation and coarsening of mixtures of three or more components.

In this case de function $u(t, x)$ denote the concentration of the point x at time t , of one the components of the mixture.

2. ASYMPTOTIC BEHAVIOUR FOR SMALL WIDTH OF INTER- $\textbf{FACE} \xi.$

◆ One-dimensional semilinear parabolic system \equiv Phase Field model

$$
\begin{cases}\n\tau\varphi_t = w\varphi_{xx} - f(\varphi) + 2u, & x \in (a, b) \\
u_t + \frac{l}{2}\varphi_t = ku_{xx}, & x \in (a, b) \\
\varphi'(a) = \varphi'(b) = 0 \\
u'(a) = u'(b) = 0 \\
\varphi(0, x) = \varphi_0(x) \in H^1(a, b) \\
u(0, x) = u_0(x) \in L^2(a, b)\n\end{cases}
$$
\n(0.5)

• A substance which may appear in different phases

- $f(\varphi) = \frac{1}{2}(\varphi^3 \varphi)$ (in two different phases)
- $u(t, x) \equiv$ temperature of the point x at time t
- $\varphi(t, x) \equiv$ is the phase field function or order parameter, (local phase average).
- $l \equiv$ latent head, $k \equiv$ thermal diffusivity.
- $\tau \equiv \text{time scale.}$
- $w \equiv$ length scale ($w = w(\xi), \xi \equiv$ interface width).
- G. Caginalp 1986, 1990 and 1991, P.C. Fife 1988 and 1990, O.Penrose 1990.

•
$$
w = \xi^2
$$
, $v = u + \frac{l}{2}\varphi \equiv$ enthalpy function and $\xi \equiv$ interface
width.

♣ Previous Results. Asymptotic behaviour of the $\text{solutions } (\varphi^\xi,v^\xi) \text{ of the system (two different phases)}$

$$
\begin{cases}\n\tau \varphi_t = \xi^2 \varphi_{xx} - \frac{1}{2} (\varphi^3 - \varphi) - l\varphi + 2v, & x \in (a, b) \\
v_t = kv_{xx} - \frac{kl}{2} \varphi_{xx}, & x \in (a, b) \\
\varphi'(a) = \varphi'(b) = 0 \\
v'(a) = v'(b) = 0 \\
\varphi^{\xi}(0, x) = \varphi_0^{\xi}(x) \in H^1(a, b) \\
v^{\xi}(0, x) = v_0^{\xi}(x) \in L^2(a, b)\n\end{cases}
$$
\n(0.6)

when $\xi \sim 0$.

- Metastable Solutions (Nor equilibrium points. Nor energy minima. But
- Have a Slow Evolution *(using Energy methods (Cahn-*Hilliard, Cahn-Morral system $(4, 16)$ (Jimenez-Casas [18, 20], Jimenez-Casas-Rodriguez-Bernal [19])
- $u(t, x) \equiv$ the concentration of the point x at time t, of one the components of the mixture.
- We consider the dynamics of phase separation and coarsening of mixtures of three or more components.

Asymptotic behaviour of the solutions (φ^ξ,v^ξ) of the system $\overline{ }$

$$
\begin{cases}\n\tau\varphi_t = \xi^2\varphi_{xx} - G'(\varphi) - l\varphi + 2v, & x \in (a, b) \\
v_t = kv_{xx} - \frac{kl}{2}\varphi_{xx}, & x \in (a, b) \\
\varphi'(a) = \varphi'(b) = 0 \\
v'(a) = v'(b) = 0 \\
\varphi^{\xi}(0, x) = \varphi_0^{\xi}(x) \in H^1(a, b) \\
v^{\xi}(0, x) = v_0^{\xi}(x) \in L^2(a, b)\n\end{cases}
$$
\n(0.7)

when $\xi \sim 0$.

- \bullet $G^{\prime}(\varphi) \equiv$ general density function, instead $\frac{1}{2}(\varphi^3 \varphi)$
- $G \geq 0$ with $G \in \mathcal{C}^3$
- G has only finitely many zeros, $G^{-1}(0) = \{z_1, ..., z_m\}$ (corresponding to the states or phases of the system).
- $G''(z_i) > 0, i = 1, ..., m$ (in this points G take the minimum.)
- for initial data (φ_0^{ξ}) $\frac{\xi}{\mathrm{\varrho}}, v_0^{\xi}$ ζ_0^{ξ}), where $\varphi_0^{\xi} \sim z_i$ except at the transition points, and $v_0^{\xi} \sim \frac{l}{2}$ $\frac{l}{2}\varphi_0^\xi$ ξ
0.
- Metastable Solutions(Nor equilibrium points. Nor energy minima)
- Have a Slow Evolution

♣ The Normalized Energy.

Lema 0.1. The energy functional defined by

$$
F_{\xi}(\varphi, v) = \int_{a}^{b} \left[\frac{\xi^{2}}{2}\varphi_{x}^{2} + G(\varphi)\right]dx + \frac{l}{2}\int_{a}^{b} \left(\frac{2}{l}v - \varphi\right)^{2} dx \quad (0.8)
$$

is a Lyapunov functional for the system (0.7) in $H^1(a,b) \times$ $L^2(a,b)$.

In particular we have that

$$
\frac{d}{dt}F_{\xi}(\varphi^{\xi}, v^{\xi}) + (\tau \|\varphi_t^{\xi}\|^2 + d\| [(-\Delta)^{-1} v_t^{\xi}] \|^2) = 0 \qquad (0.9)
$$

with
$$
d = \frac{4}{kl} > 0
$$
.

- $F_{\xi}(\varphi, v) \geq 0$.
- $F_{\xi}(\varphi, v)$ in (0.8) has a shallow valley of energy as $\xi \ll$ 1. (Cahn-Hilliard, Cahn-Morral system [4, 16]).
- For initial data in such region little energy is left to be dissipated and thus this translates into a slow evolution in time
- Transitions $(\varphi, v) \equiv \varphi \sim z_i$ and $v \sim \pm \frac{1}{2}\varphi$ φ with large gradients on small transition intervals

 $0 \leq F_{\xi}(\varphi^{\xi}(t,x), v^{\xi}(t,x)) \leq F_{\xi}(\varphi^{\xi}(0,x), v^{\xi}(0,x)) \leq h(\xi), \xi \leq 1$

Definition 1. N, m-transition

A N, m-step with transition points, $y_j, j \in \{1, 2, \ldots, N\}, \varphi^0 : [a, b] \rightarrow \{z_i, i = 1, \ldots, m\},\$ $\varphi^0 =$ e^{-t+1} $\sum_{i=1}^{N+1} z_i \mathcal{X}_{I_i}$ where X denotes the characteristic function of a set, with

$$
I_i \cap I_j = \emptyset
$$
, if $i \neq j$, $\bar{I}_1 \cup \bar{I}_2 ... \cup \bar{I}_{N+1} = [a, b]$

$$
(\partial(I_1) \cap \partial(I_2) \cap \ldots \partial(I_{N+1})) \cap (a, b) = \{y_j, j = 1, \ldots, N\}.
$$

 $(i$ f $N > m - 1$, $z_{m+r} = z_r$, $r = 1, 2, N + 1 - m$ A N, m-transition function is any function in $H^1(a, b)$, which is close to a N, m-step in $L^1(a, b)$.

Figure 2: Density function for two phases or m phases

♣ Rescaled Energy Functional

• If
$$
\liminf_{\xi \to 0} F_{\xi}(\varphi_0^{\xi}, v_0^{\xi}) \equiv O(\xi^2)
$$
, then
\n $\varphi_0^{\xi} \equiv z_i \ \delta - 1$ and $v_0^{\xi} \equiv \pm \frac{l}{2} z_i$.

- If we used $O(\xi) \equiv$ instead, we can include a large class of $functions~(\varphi_0^\xi$ \S, v_0^ξ $\binom{5}{0}$ [4], [16].
- \bullet $V_{\xi} = \frac{1}{\xi}$ $\frac{1}{\xi}F_{\xi}\equiv\text{Rescaled Energy Functional}$

$$
V_{\xi}(\varphi, v) = E_{\xi}(\varphi) + \frac{l}{2\xi} \int_{a}^{b} (\frac{2}{l}v - \varphi)^{2} dx
$$

with

$$
E_{\xi}(\varphi) = \int_{a}^{b} \left[\frac{\xi}{2}\varphi_{x}^{2} + \frac{1}{\xi}G(\varphi)\right]dx.
$$
 (0.10)

Lema 0.2. If $\{\varphi^{\xi}\}\subset H^1(a,b),$ such that $\varphi^{\xi} \longrightarrow \varphi^0$ in $L^1(a,b)$ when $\xi \to 0$, and φ^0 a function N, m-step, then:

$$
\liminf_{\xi \to 0^+} E_{\xi}[\varphi^{\xi}] \ge \frac{1}{2} \sum_{i=1}^N H^*(z_i + 1) - H^*(z_i) = C(N, m)
$$

with $H^*(s) = \int_0^s H(r) dr$ and $H(s) = |2G(s)|^{\frac{1}{2}}$.

3. SLOW MOTION FOR MORE OF TWO DIFFERENT PHASES

- $\varphi^0 \equiv N, m-step$ function.
	- $y_j, j = 1,..,N$ are the transition points
	- r is such that $(y_i r, y_j + r) \subset (a, b)$ are disjoint, with $0 < C \leq r$.
- Initial data $\equiv N, m\text{-}transition$ ([16]).
- We show an estimate on the norm of this solution in the product space $L^2(a, b) \times H^{-1}(a, b)$.

Proposition 1. We assume that the initial data (φ_0^ξ $_0^{\xi}(x),v_0^{\xi}$ $\big\{6^{\xi}(x)\big)$ is close to the structure of N, m -transition, i.e.

i) $\lim_{\xi \longrightarrow 0} \varphi_0^{\xi}$ $\zeta_0(x) = \varphi^0(x)$ in $L^1(\Omega)$. (φ^0 is N, m-step function)

ii)
$$
E_{\xi}[\varphi_0^{\xi}] \le C(N, m) + \frac{1}{2}h(\xi)
$$
, with $\xi h(\xi) \to 0$ as $\xi \to 0$.
iii) $l \int_a^b |\frac{2}{l} v_0^{\xi} - \varphi_0^{\xi}|^2 dx \le \xi h(\xi)$.

Then, there exits C_1, C_2 positive constants independent of of ξ , such that the solution (φ^{ξ}, v^{ξ}) satisfies

$$
\int_0^T \int_a^b [(\varphi_t^{\xi})^2 + |(-\Delta)^{-1}(v_t^{\xi})|^2] dx dt \le C_1(\xi h(\xi) + \xi e^{-\frac{C}{\xi}})
$$

for ξ sufficiently small, and we can choose T such that

$$
T \ge \frac{C_2}{C_1(\xi h(\xi) + \xi e^{-\frac{C}{\xi}})}.
$$

In particular, if $h(\xi) = C_3 e^{-\frac{C}{\xi}}$ $\overline{\xi}$, then

$$
T \ge C_4 e^{\frac{C}{\xi}}, C_i > 0, i = 3, 4.
$$

Slow motion when τ is independent of interface width ξ .

- We assume that the initial data (φ_0^{ξ}) $^{\xi}_{0}(x),v_{0}^{\xi}$ $\zeta_0(x)$) is close to the structure of N , m-transition.
- The initial structure of N, m -transition solution, is preserved, for a time scale of length T with $T \geq Me^{\frac{C}{\xi}}$. **Teorema 0.3.** We assume that the initial data (φ_0^{ξ} $^{\xi}_{0}(x),v_{0}^{\xi}$ $\binom{5}{0}(x)$ satisfies the hypotheses in Proposition 1, i.e. $i)$ lim_{$\xi \rightarrow 0$} φ_0^{ξ} $\zeta_0^{\xi}(x) = \varphi^0(x)$ in $L^1(\Omega)$. (φ^0 is N, m-step function) ii) $E_{\xi}[\varphi_0^{\xi}]$ $\mathcal{E}_0^{\xi} \leq C(N,m) + \frac{1}{2}h(\xi), \text{ with } \xi h(\xi) \to 0 \text{ as } \xi \to 0.$ iii) l $\frac{1}{c}$ $\frac{b}{a}$ $\left|\frac{2}{l}\right|$ $\frac{2}{l}v_0^\xi-\varphi_0^\xi$ $\int_0^{\xi} |^2 dx \leq \xi h(\xi).$ Then, for any $M > 0$

i)
$$
\lim_{\xi \to 0} \sup_{\{0 \le t \le \frac{M}{h(\xi) + e^{-\xi}}\}} |\varphi^{\xi}(t) - \varphi^0||_{L^1} = 0.
$$

\n*ii)*
$$
\lim_{\xi \to 0} \sup_{\{0 \le t \le \frac{M}{h(\xi) + e^{-\xi}}\}} |\frac{2}{t}v^{\xi}(t) - \varphi^{\xi}(t)||_{L^2} = 0.
$$

\n*iii)*
$$
\lim_{\xi \to 0} \sup_{\{0 \le t \le \frac{M}{h(\xi) + e^{-\xi}}\}} |\frac{2}{t}v^{\xi}(t) - \varphi^0||_{L^1} = 0.
$$

\n*In particular, if* $h(\xi) = ke^{-\xi}$ *for some k, then*
\n*iv)*
$$
\lim_{\xi \to 0} \sup_{0 \le t \le Me^{\xi}} \frac{C}{\xi} |\varphi^{\xi}(t) - \varphi^0||_{L^1} = 0.
$$

\n*vi)*
$$
\lim_{\xi \to 0} \sup_{0 \le t \le Me^{\xi}} \frac{C}{\xi} |\frac{2}{t}v^{\xi}(t) - \varphi^{\xi}(t)||_{L^2} = 0.
$$

\n*vi)*
$$
\lim_{\xi \to 0} \sup_{0 \le t \le Me^{\xi}} \frac{C}{\xi} |\frac{2}{t}v^{\xi}(t) - \varphi^0||_{L^1} = 0.
$$

♣ Metastable solutions for the thin-interface limit

- Now we study the thin-interface limit, this is, we consider now $\tau = \xi^2$ together with $w = \xi^2$, where ξ (interface width) goes to zero.
- In this case, we consider the initial datum φ_0 very closed to the $N, m-transition structure.$ This is, we assume that $E_\xi[\varphi_0^\xi$ $S_0^{\xi} \leq C(N, m) + \frac{1}{2}h(\xi), \text{ with } h(\xi)$ such that $\xi^{-1}h(\xi) \to 0$ as $\xi \to 0$. (instead $\xi h(\xi) \to 0$ as $\xi \to 0$ with τ independent of ξ .)
- We prove that the initial structure of $N, m transition$ solution, is preserved for a time scale of length T with
- $T \geq M \xi^{1+\delta} e^{C/\xi}$, for any positive constants $M, \delta,$ (instead $T \geq Me^{\frac{C}{5}}$).
- Thus, in this case we prove the solutions is preserves during an interval of time smaller than the above case.

Teorema 0.4. We assume that the initial data (φ_0^{ξ} $^{\xi}_{0}(x),v_{0}^{\xi}$ $\big\{6^{\xi}(x)\big)$ satisfy:

i)
$$
\lim_{\xi \to 0} \varphi_0^{\xi}(x) = \varphi^0(x)
$$
 in $L^1(\Omega)$.
\n*ii)* $E_{\xi}[\varphi_0^{\xi}] \leq C(N, m) + \frac{1}{2}h(\xi)$, *with* $\xi^{-1}h(\xi) \to 0$ *as* $\xi \to 0$.
\n*iii)* $l \int_a^b |\frac{2}{l} v_0^{\xi} - \frac{l}{2} h(\varphi_0^{\xi})|^2 dx \leq \xi h(\xi)$.
\n*Then for any* $M > 0, \delta > 0$ *we have*
\n*i)* $\lim_{\xi \to 0} \sup_{\{0 \leq t \leq \frac{M\xi^{1+\delta}}{h(\xi) + e^{-\xi}}\}} ||\varphi^{\xi}(t) - \varphi^0||_{L^1} = 0$.
\n*ii)* $\lim_{\xi \to 0} \sup_{\{0 \leq t \leq \frac{M\xi^{1+\delta}}{h(\xi) + e^{-\xi}}\}} ||\frac{2}{l} v^{\xi}(t) - \varphi^{\xi}(t)||_{L^2} = 0$.
\n*iii)* $\lim_{\xi \to 0} \sup_{\{0 \leq t \leq \frac{M\xi^{1+\delta}}{h(\xi) + e^{-\xi}}\}} ||\frac{2}{l} v^{\xi}(t) - \varphi^0||_{L^1} = 0$.

In particular, if
$$
h(\xi) = ke^{-\frac{C}{\xi}}
$$
 for some k, then
\niv) $\lim_{\xi \to 0} \sup_{0 \le t \le M\xi^{1+\delta}e^{\frac{C}{\xi}}} ||\varphi^{\xi}(t) - \varphi^0||_{L^1} = 0.$
\nv) $\lim_{\xi \to 0} \sup_{0 \le t \le M\xi^{1+\delta}e^{\frac{C}{\xi}}} ||\frac{2}{t}v^{\xi}(t) - \varphi^{\xi}(t)||_{L^2} = 0.$
\nvi) $\lim_{\xi \to 0} \sup_{0 \le t \le M\xi^{1+\delta}e^{\frac{C}{\xi}}} ||\frac{2c}{t}v^{\xi}(t) - \varphi^0||_{L^1} = 0.$

4. METASTABLE SOLUTIONS FOR NONLINEAR DIFFUSION PROB-LEM

Asymptotic behaviour of the solutions (φ^ξ,v^ξ) of the system $\frac{1}{2}$

$$
\begin{cases}\n\tau\varphi_t &= \xi^p(|\varphi_x|^{p-2}\varphi_x)_x - G'(\varphi) - l\varphi + 2v, \quad x \in (a, b) \\
v_t &= kv_{xx} - \frac{kl}{2}\varphi_{xx}, \\
\varphi'(a) &= \varphi'(b) = 0 \\
v'(a) &= v'(b) = 0 \\
\varphi^{\xi}(0, x) &= \varphi_0^{\xi}(x) \in W^{1, p}(a, b) \\
v^{\xi}(0, x) &= v_0^{\xi}(x) \in L^2(a, b)\n\end{cases}
$$
\n(0.11)

 $p > 2$, when $\xi \sim 0$.

Teorema 0.5. We assume that the initial data
$$
(\varphi_0^{\xi}(x), v_0^{\xi}(x))
$$

satisfies the hypotheses in Proposition 1, i.e.
\ni) $\lim_{\xi \to 0} \varphi_0^{\xi}(x) = \varphi^0(x)$ in $L^p(\Omega)$. $(\varphi^0$ is N, m -step func-
\ntion)
\nii) $E_{\xi}[\varphi_0^{\xi}] \leq C(N, m, p) + \frac{1}{2}h(\xi),$ with $\xi^{p-1}h(\xi) \to 0$ as $\xi \to 0$.
\niii) $l \int_a^b |\frac{2}{l} v_0^{\xi} - \varphi_0^{\xi}|^2 dx \leq \xi^{p-1}h(\xi)$.
\nThen, for any $M > 0$
\ni) $\lim_{\xi \to 0} \sup_{\{0 \leq t \leq \frac{M\xi^{1-p}}{h(\xi) + e^{-\xi}}\}} ||\varphi^{\xi}(t) - \varphi^0||_{L^1} = 0$.
\nii) $\lim_{\xi \to 0} \sup_{\{0 \leq t \leq \frac{M\xi^{1-p}}{h(\xi) + e^{-\xi}}\}} ||\frac{2}{l} v^{\xi}(t) - \varphi^{\xi}(t)||_{L^2} = 0$.
\niii) $\lim_{\xi \to 0} \sup_{\{0 \leq t \leq \frac{M\xi^{1-p}}{h(\xi) + e^{-\xi}}\}} ||\frac{2}{l} v^{\xi}(t) - \varphi^0||_{L^1} = 0$.

In particular, if
$$
h(\xi) = ke^{-\frac{C}{\xi}}
$$
 for some k, then
\niv) $\lim_{\xi \to 0} \sup_{0 \le t \le M\xi^{1-p}e^{\frac{C}{\xi}}} ||\varphi^{\xi}(t) - \varphi^0||_{L^1} = 0.$
\nv) $\lim_{\xi \to 0} \sup_{0 \le t \le M\xi^{1-p}e^{\frac{C}{\xi}}} ||\frac{2}{t}v^{\xi}(t) - \varphi^{\xi}(t)||_{L^2} = 0.$
\nvi) $\lim_{\xi \to 0} \sup_{0 \le t \le M\xi^{1-p}e^{\frac{C}{\xi}}} ||\frac{2}{t}v^{\xi}(t) - \varphi^0||_{L^1} = 0.$
\nwith $E_{\xi}(\varphi) = \int_a^b (\frac{\xi}{p} |\varphi_x|^p + \frac{1}{\xi^{p-1}} G(\varphi)) dx.$

• $F_{\xi}(\varphi, v) = \int_a^b (\frac{\xi^p}{p})$ $\frac{\varepsilon^p}{p}|\varphi_x|^p+G(\varphi))dx+\frac{l}{2}$ 2 \int $\int_a^b(\frac{2}{l})$ $\frac{2}{l}v - \varphi)^2 dx$ Lyapunov functional for the system (0.11) in $W^{1,p}(a, b) \times$ $L^2(a,b)$.

•
$$
V_{\xi}(\varphi, v) = \frac{1}{\xi^{p-1}} F_{\xi}(\varphi, v) = E_{\xi}(\varphi) + \frac{l}{2\xi^{p-1}} \int_a^b (\frac{2}{l}v - \varphi)^2 dx
$$

♣Numerical experiments

In this section we solve the phase-field equations using the Runge-Kutta

• Evolution of phase-field for two phases $(m = 2)$ We consider two phases associated to the values $+1$ and −1.

With this experiments we note that if we consider the initial conditions for φ taking two values +1 and -1 with $N = 4$ transitions points, this initial structure is conserved for a large interval of time.

We note also the length of interval of time is decreasing when the number of transitions points N is creasing.

This is if we consider $N > 4$ then the slow-motion of this

initial structure structure is less than $N = 4$.

Figure 3: Evolution of phase field for two phases, (time, Phase-field)

• Evolution of phase-field for more than two phases $m = 7$

In this case we consider $m = 7$

We note that the solutions with this structure has a slowmotion, this is this initial structure is conserved for a large interval of time.

Figure 4: Evolution of phase field for more than two phases, (time, Phase-field)

References

- [1] S.Angenent, "The zero set of a solution of a parabolic equation", J.Reine Angew.Math. 390, 79-96, (1988).
- [2] P.W.Bates, S. Zheng, "Inertial manifolds and inertial sets for the Phase-Field equations", J. of Dynamics and Diff. Eqns. vol 4,2, 375-398, (1992).
- [3] D.Brochet, X.Chen, D.Hilhorst, "Finite dimensional exponential atractor for the Phase Field model", Appl. Anal. vol 49, 3-4, 197-212, (1993).
- [4] L.Bronsard, R.V. Kohn, "On the slowness of Phase boundary motion in one space dimension", Com. on Pure and Appl. Math. vol 43, 987-997, (1990).
- [5] G.Caginalp, "An analysis of a Phase Field model of a free boundary", Arch. Rat. Mech. Anal. 92, 205-245, (1986).
- [6] G.Caginalp, "The dynamics of a conserved Phase Field system:Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits", IMA J. of Appl. Math. 44, 77-94, (1990).
- [7] G.Caginalp, "Phase Field models and sharp interface limits: some differences in subtle situations", Rocky Mountain J. Math., vol 21, 2, 603-616, (1991).
- [8] G.Caginalp, P.C.Fife, "Dynamics of layered interfaces arising from Phase boundaries", SIAM.J. Appl. Math. vol 48, 3, 506- 518, (1988).
- [9] J.Carr, R.L.Pego, "Metastable patterns in solutions of $u_t =$ $e^2u_{xx}-f(u)$ ", Comm.Pure Appl. Math. vol 42, 523-579, (1989).
- [10] J.Carr, R.Pego, "Very slow phase separation in one dimension", Lecture Notes in Physics 344, M.Rasele et al. eds., Springer-Verlag, 216-226, (1989).
- [11] J.Carr, R.Pego, "Invariant manifolds for metastable patterns in $u_t = \epsilon^2 u_{xx} - f(u)$ ", Proceeding of the Royal Society of Edimburgh, 116A, 133-160, (1990).
- [12] N.Chafee, E.F.Infante, "A Bifurcation problem for a nonlinear partial differential equation of parabolic type", Applicable Anal., vol 4, 17-37, (1974).
- [13] M. Castro, "Phase-field approach to heterogeneous nucleation", Phys. Rev. B 67, 035412 (2003).
- [14] C.M. Elliott, S. Zheng, "Global existence and stability of solutions to the Phase Field equations", Free boundary value prob-

lems (Oberwolfach, 1989), 46-58 Internat. Ser. Numer. Math. 195, Birkhäuser, Basel, (1990).

- [15] G. Fusco, J.K. Hale, "Slow-motion manifolds, dormant instability, and singular perturbations". J. Dynamics Differential Equations., vol 1, 1, 75-94 (1989).
- [16] C.P. Grant, "Slow motion in one-dimensional Cahn-Morral systems", SIAM J. Math. Anal, vol 26, 1, 21-34, (1995).
- [17] D. Henry, "Geometric theory of semilinear parabolic equations", Lectures Notes in Mathematics 840, Springer-Verlag, (1981).
- [18] A. Jiménez-Casas, "Dinámica en dimensión finita: Modelos de campos de fase y un termosifón cerrado," Ph. D. Thesis, U.C.M., (1996).
- [19] A. Jim´enez-Casas, A. Rodriguez-Bernal "Linear stability analysis and metastable solutions for a phase field model," Proc. Royal Soc. Edinburgh 129A, 571-600 (1999).
- $[20]$ A. Jiménez-Casas, "Metastable solutions for the thin-interface limit of a phase-field model," Nonlinear analysis, 63, e963-e970 , (2005).
- [21] A. Jiménez-Casas, "Invariant regions and global existence for phase-field model," Discrete and Continuous Dinamical System, vol 1,n2, 273-281 , (2008).
- [22] M. Castro Ponce, A. Jiménez-Casas, "Slow motion for a phasefield model," Mathematical Methods in the Applied Sciences , to appear.
- [23] A. Karma and W.-J. Rappel, "Quantitative phase-field modeling of dendritic growth in two and three dimensions", Phys. Rev. E 57, 4323-4349 (1998).
- [24] H.Matano, "Asymptotic behavior and stability of solutions of semilineat diffusion equations", Publi. RIMS, Kyoto Univ, 15, 401-454, (1979).
- [25] H.Matano, "Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation", J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 29, 401-441, (1982).
- [26] L. Modica, S. Mortola "Il limite nella Γ-convergenze di una famiglia di funzionalli ellitichi", Boll. Un. Math. It. (3) A14, 526-529, (1977).
- [27] O.Penrose, P.Fife, "Thermodynamically consistent models of Phase-Field type for kinetics of phase transitions", Physica D43, 44-62, (1990).
- [28] J. Smoller, A. Wasserman, "Global bifurcation of steady-state solutions", J. of Diff. Equ., 39, 269-290, (1981).
- [29] P. Sternberg, "The effect of a singular perturbation on nonconvex variational problems", Arch. Rat. Mech. Anal., 101, 209-260, (1988).